|
|
Registro Completo |
Biblioteca(s): |
Embrapa Agricultura Digital. |
Data corrente: |
01/06/2018 |
Data da última atualização: |
06/06/2018 |
Tipo da produção científica: |
Artigo em Periódico Indexado |
Autoria: |
TAVARES, R. L. M.; OLIVEIRA, S. R. de M.; BARROS, F. M. M. de; FARHATE, C. V. V.; SOUZA, Z. M. de; LA SCALA JUNIOR, N. |
Afiliação: |
ROSE LUIZA MORAES TAVARES, Rio Verde University; STANLEY ROBSON DE MEDEIROS OLIVEIRA, CNPTIA; FLÁVIO MARGARITO MARTINS DE BARROS, Feagri/Unicamp; CAMILA VIANA VIEIRA FARHATE, Feagri/Unicamp; ZIGOMAR MENEZES DE SOUZA, Feagri/Unicamp; NEWTON LA SCALA JUNIOR, FCAV/Unesp. |
Título: |
Prediction of soil CO2 flux in sugarcane management systems using the Random Forest approach. |
Ano de publicação: |
2018 |
Fonte/Imprenta: |
Scientia Agricola, Piracicaba, v. 74, n. 4, p. 281-287, July/Aug. 2018. |
DOI: |
http://dx.doi.org/10.1590/1678-992X-2017-0095 |
Idioma: |
Inglês |
Conteúdo: |
ABSTRACT: The Random Forest algorithm is a data mining technique used for classifying attributes in order of importance to explain the variation in an attribute-target, as soil CO2 flux. This study aimed to identify prediction of soil CO2 flux variables in management systems of sugarcane through the machine-learning algorithm called Random Forest. Two different management areas of sugarcane in the state of São Paulo, Brazil, were selected: burned and green. In each area, we assembled a sampling grid with 81 georeferenced points to assess soil CO2 flux through automated portable soil gas chamber with measuring spectroscopy in the infrared during the dry season of 2011 and the rainy season of 2012. In addition, we sampled the soil to evaluate physical, chemical, and microbiological attributes. For data interpretation, we used the Random Forest algorithm, based on the combination of predicted decision trees (machine learning algorithms) in which every tree depends on the values of a random vector sampled independently with the same distribution to all the trees of the forest. The results indicated that clay content in the soil was the most important attribute to explain the CO2 flux in the areas studied during the evaluated period. The use of the Random Forest algorithm originated a model with a good fit (R2 = 0.80) for predicted and observed values. |
Palavras-Chave: |
Data mining; Green sugarcane; Mineração de dados; Random Forest algorithm. |
Thesagro: |
Argila; Cana de Açúcar; Saccharum Officinarum. |
Thesaurus Nal: |
Clay; Soil organic carbon; Soil respiration; Sugarcane. |
Categoria do assunto: |
X Pesquisa, Tecnologia e Engenharia |
URL: |
https://ainfo.cnptia.embrapa.br/digital/bitstream/item/177973/1/AP-Prediction-Tavares-etal.pdf
|
Marc: |
LEADER 02375naa a2200325 a 4500 001 2092118 005 2018-06-06 008 2018 bl uuuu u00u1 u #d 024 7 $ahttp://dx.doi.org/10.1590/1678-992X-2017-0095$2DOI 100 1 $aTAVARES, R. L. M. 245 $aPrediction of soil CO2 flux in sugarcane management systems using the Random Forest approach.$h[electronic resource] 260 $c2018 520 $aABSTRACT: The Random Forest algorithm is a data mining technique used for classifying attributes in order of importance to explain the variation in an attribute-target, as soil CO2 flux. This study aimed to identify prediction of soil CO2 flux variables in management systems of sugarcane through the machine-learning algorithm called Random Forest. Two different management areas of sugarcane in the state of São Paulo, Brazil, were selected: burned and green. In each area, we assembled a sampling grid with 81 georeferenced points to assess soil CO2 flux through automated portable soil gas chamber with measuring spectroscopy in the infrared during the dry season of 2011 and the rainy season of 2012. In addition, we sampled the soil to evaluate physical, chemical, and microbiological attributes. For data interpretation, we used the Random Forest algorithm, based on the combination of predicted decision trees (machine learning algorithms) in which every tree depends on the values of a random vector sampled independently with the same distribution to all the trees of the forest. The results indicated that clay content in the soil was the most important attribute to explain the CO2 flux in the areas studied during the evaluated period. The use of the Random Forest algorithm originated a model with a good fit (R2 = 0.80) for predicted and observed values. 650 $aClay 650 $aSoil organic carbon 650 $aSoil respiration 650 $aSugarcane 650 $aArgila 650 $aCana de Açúcar 650 $aSaccharum Officinarum 653 $aData mining 653 $aGreen sugarcane 653 $aMineração de dados 653 $aRandom Forest algorithm 700 1 $aOLIVEIRA, S. R. de M. 700 1 $aBARROS, F. M. M. de 700 1 $aFARHATE, C. V. V. 700 1 $aSOUZA, Z. M. de 700 1 $aLA SCALA JUNIOR, N. 773 $tScientia Agricola, Piracicaba$gv. 74, n. 4, p. 281-287, July/Aug. 2018.
Download
Esconder MarcMostrar Marc Completo |
Registro original: |
Embrapa Agricultura Digital (CNPTIA) |
|
Biblioteca |
ID |
Origem |
Tipo/Formato |
Classificação |
Cutter |
Registro |
Volume |
Status |
URL |
Voltar
|
|
Registros recuperados : 10 | |
3. |  | FARHATE, C. V. V.; SOUZA, Z. M. de; OLIVEIRA, S. R. de M.; CARVALHO, J. L. N.; LA SCALA JÚNIOR, N.; SANTOS, A. P. G. Classification of soil respiration in areas of sugarcane renewal using decision tree. Scientia Agricola, v. 75, n. 3, p. 216-224, May/June 2018.Tipo: Artigo em Periódico Indexado | Circulação/Nível: A - 1 |
Biblioteca(s): Embrapa Agricultura Digital. |
|    |
5. |  | TAVARES, R. L. M.; OLIVEIRA, S. R. de M.; BARROS, F. M. M. de; FARHATE, C. V. V.; SOUZA, Z. M. de; LA SCALA JUNIOR, N. Prediction of soil CO2 flux in sugarcane management systems using the Random Forest approach. Scientia Agricola, Piracicaba, v. 74, n. 4, p. 281-287, July/Aug. 2018.Tipo: Artigo em Periódico Indexado | Circulação/Nível: A - 1 |
Biblioteca(s): Embrapa Agricultura Digital. |
|    |
6. |  | MARÇAL, M. F. M.; SOUZA, Z. M. de; TAVARES, R. L. M.; FARHATE, C. V. V.; OLIVEIRA, S. R. de M.; GALINDO, F. S. Predictive models to estimate carbon stocks in agroforestry systems. Forests, v. 12, n. 9, p. 1-15, Sept. 2021. Article 1240. Na publicação: Stanley Robson Medeiros Oliveira.Tipo: Artigo em Periódico Indexado | Circulação/Nível: A - 2 |
Biblioteca(s): Embrapa Agricultura Digital. |
|    |
7. |  | FARHATE, C. V. V.; SOUZA, Z. M. de; OLIVEIRA, S. R. de M.; LOVERA, L. H.; OLIVEIRA, I. N. de; GUIMARÃES, E. M. Data mining techniques for classification of soil CO2 emission. In: WORLD CONGRESS OF SOIL SCIENCE, 21., 2018, Rio de Janeiro. Soil science: beyond food and fuel: abstracts. Viçosa, MG: SBCS, 2018. Não paginado. WCSS 2018.Tipo: Resumo em Anais de Congresso |
Biblioteca(s): Embrapa Agricultura Digital. |
|    |
8. |  | LÓPEZ-NORONHA, R.; SOUZA, Z. M. de; SOARES, M. D. R.; CAMPOS, M. C. C.; FARHATE, C. V. V.; OLIVEIRA, S. R. de M. Soil carbon stock in archaeological black earth under different land use systems in the Brazilian Amazon. Agronomy Journal, v. 112, n. 5, p. 4437-4450, Sept./Oct. 2020.Tipo: Artigo em Periódico Indexado | Circulação/Nível: A - 1 |
Biblioteca(s): Embrapa Agricultura Digital. |
|    |
9. |  | NORONHA, R. L.; SOARES, M. D. R.; OLIVEIRA, I. N. de; FARHATE, C. V. V.; SOUZA, Z. M. de; OLIVEIRA, S. R. de M. Soil carbon stock predictive models on archaeological black lands - natural and transformed. In: WORLD CONGRESS OF SOIL SCIENCE, 21., 2018, Rio de Janeiro. Soil science: beyond food and fuel: abstracts. Viçosa, MG: SBCS, 2018. Não paginado. WCSS 2018.Tipo: Resumo em Anais de Congresso |
Biblioteca(s): Embrapa Agricultura Digital. |
|    |
Registros recuperados : 10 | |
|
Nenhum registro encontrado para a expressão de busca informada. |
|
|