02950naa a2200709 a 450000100080000000500110000800800410001902000220006002400530008210000140013524500670014926000090021630000150022552009810024065000180122165000120123965000110125165000190126265000290128165000100131070000190132070000150133970000160135470000160137070000240138670000120141070000170142270000150143970000140145470000160146870000160148470000230150070000170152370000160154070000150155670000140157170000180158570000140160370000150161770000220163270000160165470000230167070000230169370000160171670000130173270000250174570000140177070000160178470000130180070000160181370000140182970000150184370000200185870000140187870000170189270000130190970000220192270000140194470000140195870000160197277302520198821305232022-11-11 2021 bl uuuu u00u1 u #d a978-3-030-55396-87 ahttps://doi.org/10.1007/978-3-030-55396-8_62DOI1 aZAMAN, M. aMethane production in ruminant animals.h[electronic resource] c2021 ap. 177-211 aAgriculture is a significant source of GHGs globally and ruminant livestock animals are one of the largest contributors to these emissions, responsible for an estimated 14% of GHGs (CH4 and N2O combined) worldwide. A large portion of GHG fluxes from agricultural activities is related to CH4 emissions from ruminants. techniques, artificial (e.g. SF6) or natural (e.g. CO2) tracer techniques, and micrometeorological methods using open-path lasers. Under the indirect methods, emission mechanisms are understood, where the CH4 emission potential is estimated based on the substrate characteristics and the digestibility (i.e. from volatile fatty acids). These approximate methods are useful if no direct measurement is possible. The different systems used to quantify these emission potentials are presented in this chapter. Also, CH4 from animal waste (slurry, urine, dung) is an important source: methods pertaining to measuring GHG potential from these sources are included aAnimal wastes aAnimals acattle aclimate change agreenhouse gas emissions aurine1 aKLEINEIDAM, K.1 aBAKKEN, L.1 aBERENDT, J.1 aBRACKEN, C.1 aBUTTERBACH-BAHL, K.1 aCAI, Z.1 aCHANG, S. X.1 aCLOUGH, T.1 aDAWAR, K.1 aDING, W. X.1 aDÖRSCH, P.1 aMARTINS, M. dos R.1 aECKHARDT, C.1 aFIEDLER, T.1 aFROSCH, T.1 aGOOPY, J.1 aGORRES, C. M.1 aGUPTA, A.1 aHENJES, S.1 aHOFMMAN, M. E. G.1 aHORN, M. A.1 aJAHANGIR, M. M. R.1 aJANSEN-WILLEMS, A.1 aLENHART, K.1 aHENG, L.1 aLEWICKA-SZCZEBAK, D.1 aLUCIC, G.1 aMERBOLD, L.1 aMOHN, J.1 aMOLSTAD, L.1 aMOSER, G.1 aMURPHY, P.1 aSANZ-COBENA, A.1 aSIMEK, M.1 aURQUIAGA, S.1 aWELL, R.1 aWRAGE-MÖNNIG, N.1 aZAMAN, S.1 aSHANG, J.1 aMÜLLER, C. tIn: ZAMAN, M.; HENG, L.; Müller, C. (Ed.). Measuring emission of agricultural greenhouse gases and developing mitigation options using nuclear and related techniques: applications of nuclear techniques for GHGs. London: Springer, 2021. Chapter 6.