02483naa a2200289 a 450000100080000000500110000800800410001902200140006002400390007410000220011324501140013526000090024952016260025865000230188465000100190765000260191765000120194365000220195565000170197765300160199465300150201070000220202570000270204770000250207470000180209977300760211720824922023-03-01 2017 bl uuuu u00u1 u #d a1983-40637 a10.1590/1983-40632016v47427382DOI1 aGUIMARÃES, R. A. aCharacterization of Sarocladium oryzae and its reduction potential of rice leaf blast.h[electronic resource] c2017 aThe integrated management of rice leaf blast (Magnaporthe oryzae) is carried out mainly with the adoption of chemical control. However, the search for alternative practices has grown in recent years. Thus, the variability of 28 Sarocladium oryzae isolates was evaluated for the cerulenin production, as well as its potential for reducing the severity of rice leaf blast, quantifying the activity of enzymes linked to the plant defense mechanisms. More than 55 % of the S. oryzae isolates were antagonistic to the pathogens M. oryzae, Cochliobolus miyabeanus, Thanatephorus cucumeris and Monographella albescens, and 60 % of the isolates produced cerulenin at detectable levels. Both BRM 6461 (296.0 ug mL-1) and BRM 6493 (undetectable cerulenin) inhibited the formation of M. oryzae appressoria in 89.5 % and 85 %, respectively. The BRM 6461 isolate, applied as conidial suspension and filtered, reduced the severity of rice leaf blast in 68.8 % and 75.5 %, respectively. The enzymatic activity in the presence of M. oryzae was higher for lipoxygenase at 5 h (filtered) and at 24 h and 72 h (conidial suspension) after the pathogen inoculation. For phenylalanine ammonia lyase, the highest expression was at 5 h (filtered) and 72 h (conidial suspension). The enzymes chitinase, B-1,3-glucanase and peroxidase and the salicylic acid phytohormone presented no differences, in relation to the controls (water and M. oryzae). The filtered from the BRM 6461 isolate, basically constituted by cerulenin, reduced the severity of rice leaf blast and possibly activated the defense mechanisms of the rice plants against M. oryzae. aMagnaporthe oryzae aArroz aAtividade Enzimática aBrusone aDoença de planta aOryza sativa aBiocontrole aCerulenina1 aLOBO, V. L. da S.1 aCORTES, M. V. de C. B.1 aFILIPPI, M. C. C. de1 aPRABHU, A. S. tPesquisa Agropecuária Tropicalgv. 47, n. 1, p. 41-52, jan./mar. 2017.