02248naa a2200265 a 450000100080000000500110000800800410001902400510006010000180011124501380012926000090026752013940027665000200167065000180169065000260170865000140173465300380174865300260178665300220181265300210183470000230185570000280187870000170190677300590192320814882021-11-11 2018 bl uuuu u00u1 u #d7 ahttps://doi.org/10.1007/s11104-017-3491-72DOI1 aSANTOS, F. M. aUnderstanding the enhanced litter decomposition of mixed-species plantations of Eucalyptus and Acacia mangium.h[electronic resource] c2018 aBackground and aims Soil microbial-derived litter decomposition represents an important step in the global carbon and nutrient cycling and, at the local level, is primarily driven by litter chemistry. Here, we assessed how mixed-species plantations with Eucalyptus urograndis and Acacia mangium could be a key to enhancing litter production, decomposition, and soil microbial activity. Methods The relationships between litter decomposition and litter quality and quantity were compared among 6-year-old monocultures of E. urograndis and A. mangium (E100+N and A100, respectively) and a mixed plantation of both species (E50A50). Additionally, we evaluated soil microbial biomass carbon (MBC) and nitrogen (MBN), soil basal respiration (SBR), soil enzymes and the N mineralization potential. Results The return to soil of N via litterfall in E50A50 was greater than E100+N, while the return of P in E100+N and E50A50 were higher than A100. The decomposition rate in A100 was slower than in the E50A50 and E100+N. The microbial activity, represented by soil enzyme activities (proteases and N-acetyl-B- glucosaminidases), was consistently higher in E50A50 than in A100. Conclusion The E50A50 presented a more balanced supply ofN and P associated to a better structural quality of the litter for microbial metabolism, with synergic reflections on decomposition rates and release of nitrogen. aEnzyme activity aIntercropping aAtividade Enzimática aNutriente aÁrvores fixadoras de nitrogênio aDecomposer starvation aN P stoichiometry aNutrient cycling1 aBALIEIRO, F. de C.1 aMARCELO ANTONIOL FONTES1 aCHAER, G. M. tPlant and Soilgv. 423, n. 1/2, p. 141-155, Feb. 2018.