03554naa a2200241 a 450000100080000000500110000800800410001910000170006024500760007726000090015352027280016265000170289065000140290765000200292165000120294165000140295365300280296765300460299570000200304170000190306170000230308077302090310320794982017-11-10 2017 bl uuuu u00u1 u #d1 aMICHELON, W. aPhycoremediation of agro-industrial wastewaters.h[electronic resource] c2017 aAbstract: This chapter addresses phycoremediation as an alternative tertiary treatment process for the removal of eutrophying nutrients from wastewaters whilst producing microalgae biomass as a valuable source of feedstock. Microalgae nutrient removal efficiency has been evaluated in laboratory and pilot-scale photobioreactors using either natural light or artificial light with specific wavelength for enhanced photosynthesis. Different reactor configurations can be utilized for phycoremediation, and these are discussed here. Operational control of hydraulic retention times in photobioreactors can lead to changes in QXWULHQW¶V bioavailability, thus contributing to significant changes in microalgal cellular composition. Without nutrient control processes, the intrinsic characteristics of a nutrientrich wastewater is likely to stimulate the growth of microalgae with high concentrations of carbohydrate and proteins, and low lipid content. Wastewater treatment facilities that use biodigesters to generate methane as biofuel can benefit from microalgae biomass. For instance, the microalgae biomass produced during the phycoremediation process is harvested and used as an alternative external source of carbon for microorganisms, thus supplementing biogas production. Furthermore, removal of CO2 and corrosive H2S can be accomplished by microalgae growing in closed system photobioreactors placed downstream from biodigesters. This integrated process results in faster nutrient removal rates from wastewater due to increased microalgae biomass growing at the expenses of higher levels of CO2. Therefore, the nutrient removal rate is not only enhanced, but a purified biomethane is also produced. Major concerns exist over several invasive and antibiotic resistant organisms thriving in wastewater effluents that are known to threaten human and animal health. Whereas several physicochemical treatments are commonly used as disinfectants (i.e., UV irradiation, use of strong oxidant radicals, pH increase, and selective membranes), most, if not all of these approaches, are difficult to operate and are usually economically unfeasible. Microalgae seem effective in the elimination of pathogens due to production of a wide range of antibacterial, antiviral, antifungal, enzyme inhibiting, immune stimulant, cytotoxic and anti-plasmodia substances. The use of microalgae-based wastewater treatment can also aid putative pathogen removal due to photosynthetic activity, which substantially increase oxygen levels and pH, thus leading to bacterial death. In a nutshell, this chapter concludes with a proposal description of integrating wastewater treatment with a microalgae culturing system in agricultural scenarios. aAntibiótico aBactéria aBiocombustível aBiogás aMicroalga aResistência bacteriana aTratamento de águas residuais agrícolas1 aPRANDINI, J. M.1 aMEZZARI, M. P.1 aSILVA, M. L. B. da tIn: TSANG, Y. F. (Ed.) Photobioreactors: advancements, appplications and research. New York: Nova Science Publishers, Inc., [2017]. 414 p. (Environmental remediation technologies, regulations and safety).