|
|
 | Acesso ao texto completo restrito à biblioteca da Embrapa Florestas. Para informações adicionais entre em contato com cnpf.biblioteca@embrapa.br. |
Registro Completo |
Biblioteca(s): |
Embrapa Florestas. |
Data corrente: |
17/11/2011 |
Data da última atualização: |
11/10/2017 |
Tipo da produção científica: |
Nota Técnica/Nota Científica |
Autoria: |
SILVA, F. F.; VARONA, L.; RESENDE, M. D. V. de; BUENO FILHO, J. S. S.; ROSA, G. J. M.; VIANA, J. M. S. |
Afiliação: |
Fabyano Fonseca Silva, UFV; Luis Varona, Universidad de Zaragoza; MARCOS DEON VILELA DE RESENDE, CNPF; Júlio Sílvio S. Bueno Filho, UFLA; Guilherme J. M. Rosa, University of Wisconsin; José Marcelo Soriano Viana, UFV. |
Título: |
A note on accuracy of Bayesian LASSO regression in GWS. |
Ano de publicação: |
2011 |
Fonte/Imprenta: |
Livestock Science, v. 142, p. 310-314, 2011. |
DOI: |
10.1016/j.livsci.2011.09.010 |
Idioma: |
Inglês |
Notas: |
Short communication. |
Conteúdo: |
Several genome wide selection (GWS) statistical methods have been proposed in the last years, and among these stands out the Bayesian LASSO (BL), which is a penalized regression method based on the regularization parameter (?) estimates. In general, the posterior mean values for ? are those that minimize the residual sum of squares (RSS) while controlling the L1 norm (absolute values) of the regression coefficients. However, another option is to use fixed values of ?, which is independent of this minimization process. Nevertheless, the most important aim of GWS is to make predictions about genomic breeding values (GBV=u) for individuals that have not been measured directly for the trait, and for this reason the parameter to maximize should be the accuracy (ru; ?u ). Thus, a question can arise as to whether such estimated ? values that minimize RSS are the same as that which maximize ru; ?u . In order to answer this question, this paper aims to provide methodological and computational resources in order to evaluate the influence of BL regularization parameter estimates on the correlation between true and estimated GBV (accuracy) depending on genetic structure of the target trait (few or many QTLs and low or medium heritability). In general, it is possible to report, on average, that GBV prediction is robust in relation to the ? estimation, since the different values for ? lead to similar accuracy values. Moreover, the fixed ? values grid request high computational costs, implying that the random ? method is more attractive, since it is much faster to use just one Gibbs sampler run, while the grid must to use one run for each fixed ? value. MenosSeveral genome wide selection (GWS) statistical methods have been proposed in the last years, and among these stands out the Bayesian LASSO (BL), which is a penalized regression method based on the regularization parameter (?) estimates. In general, the posterior mean values for ? are those that minimize the residual sum of squares (RSS) while controlling the L1 norm (absolute values) of the regression coefficients. However, another option is to use fixed values of ?, which is independent of this minimization process. Nevertheless, the most important aim of GWS is to make predictions about genomic breeding values (GBV=u) for individuals that have not been measured directly for the trait, and for this reason the parameter to maximize should be the accuracy (ru; ?u ). Thus, a question can arise as to whether such estimated ? values that minimize RSS are the same as that which maximize ru; ?u . In order to answer this question, this paper aims to provide methodological and computational resources in order to evaluate the influence of BL regularization parameter estimates on the correlation between true and estimated GBV (accuracy) depending on genetic structure of the target trait (few or many QTLs and low or medium heritability). In general, it is possible to report, on average, that GBV prediction is robust in relation to the ? estimation, since the different values for ? lead to similar accuracy values. Moreover, the fixed ? values grid request high computational costs, impl... Mostrar Tudo |
Palavras-Chave: |
Genome wide selection; Penalized regression; SNP markers. |
Categoria do assunto: |
-- |
Marc: |
LEADER 02366naa a2200241 a 4500 001 1906248 005 2017-10-11 008 2011 bl uuuu u00u1 u #d 024 7 $a10.1016/j.livsci.2011.09.010$2DOI 100 1 $aSILVA, F. F. 245 $aA note on accuracy of Bayesian LASSO regression in GWS.$h[electronic resource] 260 $c2011 500 $aShort communication. 520 $aSeveral genome wide selection (GWS) statistical methods have been proposed in the last years, and among these stands out the Bayesian LASSO (BL), which is a penalized regression method based on the regularization parameter (?) estimates. In general, the posterior mean values for ? are those that minimize the residual sum of squares (RSS) while controlling the L1 norm (absolute values) of the regression coefficients. However, another option is to use fixed values of ?, which is independent of this minimization process. Nevertheless, the most important aim of GWS is to make predictions about genomic breeding values (GBV=u) for individuals that have not been measured directly for the trait, and for this reason the parameter to maximize should be the accuracy (ru; ?u ). Thus, a question can arise as to whether such estimated ? values that minimize RSS are the same as that which maximize ru; ?u . In order to answer this question, this paper aims to provide methodological and computational resources in order to evaluate the influence of BL regularization parameter estimates on the correlation between true and estimated GBV (accuracy) depending on genetic structure of the target trait (few or many QTLs and low or medium heritability). In general, it is possible to report, on average, that GBV prediction is robust in relation to the ? estimation, since the different values for ? lead to similar accuracy values. Moreover, the fixed ? values grid request high computational costs, implying that the random ? method is more attractive, since it is much faster to use just one Gibbs sampler run, while the grid must to use one run for each fixed ? value. 653 $aGenome wide selection 653 $aPenalized regression 653 $aSNP markers 700 1 $aVARONA, L. 700 1 $aRESENDE, M. D. V. de 700 1 $aBUENO FILHO, J. S. S. 700 1 $aROSA, G. J. M. 700 1 $aVIANA, J. M. S. 773 $tLivestock Science$gv. 142, p. 310-314, 2011.
Download
Esconder MarcMostrar Marc Completo |
Registro original: |
Embrapa Florestas (CNPF) |
|
Biblioteca |
ID |
Origem |
Tipo/Formato |
Classificação |
Cutter |
Registro |
Volume |
Status |
URL |
Voltar
|
|
Registro Completo
Biblioteca(s): |
Embrapa Mandioca e Fruticultura. |
Data corrente: |
04/02/2008 |
Data da última atualização: |
05/07/2023 |
Tipo da produção científica: |
Artigo de Divulgação na Mídia |
Autoria: |
FONSECA, N. |
Afiliação: |
Nelson Fonseca, CNPMF. |
Título: |
Embrapa trabalha em áreas de projeto de assentamentos rurais na Bahia. |
Ano de publicação: |
2007 |
Fonte/Imprenta: |
In: BOLETIM AGROPECUÁRIO. Artigos técnicos. |
Idioma: |
Português |
Notas: |
Acesso em: 28 dez. 2007 |
Conteúdo: |
Numa ação conjunta entre a Embrapa Mandioca e Fruticultura Tropical e o Programa de Assessoria Técnica Ambiental e Social (ATES) do Instituto Nacional de Colonização e Reforma Agrária (INCRA), vários Projetos de Assentamentos (PAs) rurais baianos foram beneficiados com a implantação de Unidades de Material Básico Propagativo (UMBP) de fruteiras tropicais selecionadas, destacando o umbuzeiro, a umbucajazeira, a mangueira e a aceroleira. |
Palavras-Chave: |
PAs; Pequeno agricultor. |
Thesagro: |
Agricultura Familiar; Fruticultura. |
Categoria do assunto: |
-- |
URL: |
https://www.infoteca.cnptia.embrapa.br/infoteca/bitstream/doc/654475/1/Embrapa-trabalha-em-areas-de-projeto-de-assentamentos-rurais-na-Bahia.pdf
|
Marc: |
LEADER 00956nam a2200169 a 4500 001 1654475 005 2023-07-05 008 2007 bl uuuu u00u1 u #d 100 1 $aFONSECA, N. 245 $aEmbrapa trabalha em áreas de projeto de assentamentos rurais na Bahia.$h[electronic resource] 260 $aIn: BOLETIM AGROPECUÁRIO. Artigos técnicos.$c2007 500 $aAcesso em: 28 dez. 2007 520 $aNuma ação conjunta entre a Embrapa Mandioca e Fruticultura Tropical e o Programa de Assessoria Técnica Ambiental e Social (ATES) do Instituto Nacional de Colonização e Reforma Agrária (INCRA), vários Projetos de Assentamentos (PAs) rurais baianos foram beneficiados com a implantação de Unidades de Material Básico Propagativo (UMBP) de fruteiras tropicais selecionadas, destacando o umbuzeiro, a umbucajazeira, a mangueira e a aceroleira. 650 $aAgricultura Familiar 650 $aFruticultura 653 $aPAs 653 $aPequeno agricultor
Download
Esconder MarcMostrar Marc Completo |
Registro original: |
Embrapa Mandioca e Fruticultura (CNPMF) |
|
Biblioteca |
ID |
Origem |
Tipo/Formato |
Classificação |
Cutter |
Registro |
Volume |
Status |
Fechar
|
Nenhum registro encontrado para a expressão de busca informada. |
|
|