BDPA - Bases de Dados da Pesquisa Agropecuária Embrapa
 






Registro Completo
Biblioteca(s):  Embrapa Caprinos e Ovinos.
Data corrente:  13/02/2017
Data da última atualização:  13/02/2017
Autoria:  REDDY, R. R.; PRASAD, D. A.
Título:  Performance nutrient utilization and nitrogen balance of growing and finishing lambs fed complete ensiled diets.
Ano de publicação:  1983
Fonte/Imprenta:  The Indian Journal of Animal Sciences, v. 53, n. 4, p. 387-392, Apr. 1983.
Idioma:  Inglês
Conteúdo:  Abstract: The enriched sugarcane tops (30% DPW [dried poultry waste], dry basis; 2% molasses and 0.5% salt) were ensiled with conventional (CD-1) or an unconventional (CD-2) mixture, and were compared with complete diets made by blending enriched sugarcane tops silage with conventional (CD-3) or unconventional (CD-4) mixture prior to feeding to lambs, in a ratio of 50:50 on DMB [dry matter basis]. In experiment 1, significantly higher (P < 0.01) ADG [average daily gain] was observed in lambs fed CD-4 than those fed CD-1 or CD-2. Complete ensiling with conventional mixture decreased feed efficiency (P < 0.01) and gain/protein intake (P < 0.05). Feed cost per kilogram gain was greater by Rs 7.07. In experiment 2, the ADG for lambs fed CD-3 or CD-4 was higher (P < 0.01) than for those fed the respective complete ensiled diets. In experiment 3, the ADG (P < 0.01), dry-matter [DM] intake (P < 0.05) and DM consumed per W0.75 kg (P < 0.01) were higher; feed/gain was superior (P < 0.05) and gain/protein intake higher (P < 0.01) for lambs fed CD-3 than for those fed CD-1. Nutrient digestibilities and N retention among treatments were not different. The retention of Ca (P < 0.10) and P (P < 0.05) was lower for lambs fed CD-1 than for those fed CD-3 or CD-4. Higher (P < 0.01) dressing percentage on empty body weight and separable lean and lower (P < 0.01) bone and fat were observed in treatment 3 than in treatment 1. Complete ensiling with unconventional mixture did not affect dressing... Mostrar Tudo
Palavras-Chave:  Balanço de nitrogênio.
Thesagro:  Alimento para animal; Cana de açúcar; Cordeiro; Crescimento; Eficiência nutricional; Ensilagem; Ganho de peso; Nutrição animal; Nutriente; Ovino; Silagem.
Thesaurus Nal:  Animal feeding; Animal nutrition; Nitrogen balance; Sheep.
Categoria do assunto:  L Ciência Animal e Produtos de Origem Animal
Marc:  Mostrar Marc Completo
Registro original:  Embrapa Caprinos e Ovinos (CNPC)
Biblioteca ID Origem Tipo/Formato Classificação Cutter Registro Volume Status URL
CNPC32764 - 1ADDAP - PP
Voltar






Registro Completo

Biblioteca(s):  Embrapa Agricultura Digital.
Data corrente:  01/06/2018
Data da última atualização:  06/06/2018
Tipo da produção científica:  Artigo em Periódico Indexado
Circulação/Nível:  A - 1
Autoria:  TAVARES, R. L. M.; OLIVEIRA, S. R. de M.; BARROS, F. M. M. de; FARHATE, C. V. V.; SOUZA, Z. M. de; LA SCALA JUNIOR, N.
Afiliação:  ROSE LUIZA MORAES TAVARES, Rio Verde University; STANLEY ROBSON DE MEDEIROS OLIVEIRA, CNPTIA; FLÁVIO MARGARITO MARTINS DE BARROS, Feagri/Unicamp; CAMILA VIANA VIEIRA FARHATE, Feagri/Unicamp; ZIGOMAR MENEZES DE SOUZA, Feagri/Unicamp; NEWTON LA SCALA JUNIOR, FCAV/Unesp.
Título:  Prediction of soil CO2 flux in sugarcane management systems using the Random Forest approach.
Ano de publicação:  2018
Fonte/Imprenta:  Scientia Agricola, Piracicaba, v. 74, n. 4, p. 281-287, July/Aug. 2018.
DOI:  http://dx.doi.org/10.1590/1678-992X-2017-0095
Idioma:  Inglês
Conteúdo:  ABSTRACT: The Random Forest algorithm is a data mining technique used for classifying attributes in order of importance to explain the variation in an attribute-target, as soil CO2 flux. This study aimed to identify prediction of soil CO2 flux variables in management systems of sugarcane through the machine-learning algorithm called Random Forest. Two different management areas of sugarcane in the state of São Paulo, Brazil, were selected: burned and green. In each area, we assembled a sampling grid with 81 georeferenced points to assess soil CO2 flux through automated portable soil gas chamber with measuring spectroscopy in the infrared during the dry season of 2011 and the rainy season of 2012. In addition, we sampled the soil to evaluate physical, chemical, and microbiological attributes. For data interpretation, we used the Random Forest algorithm, based on the combination of predicted decision trees (machine learning algorithms) in which every tree depends on the values of a random vector sampled independently with the same distribution to all the trees of the forest. The results indicated that clay content in the soil was the most important attribute to explain the CO2 flux in the areas studied during the evaluated period. The use of the Random Forest algorithm originated a model with a good fit (R2 = 0.80) for predicted and observed values.
Palavras-Chave:  Data mining; Green sugarcane; Mineração de dados; Random Forest algorithm.
Thesagro:  Argila; Cana de Açúcar; Saccharum Officinarum.
Thesaurus NAL:  Clay; Soil organic carbon; Soil respiration; Sugarcane.
Categoria do assunto:  X Pesquisa, Tecnologia e Engenharia
URL:  https://www.alice.cnptia.embrapa.br/alice/bitstream/doc/1092118/1/APPredictionTavaresetal.pdf
Marc:  Mostrar Marc Completo
Registro original:  Embrapa Agricultura Digital (CNPTIA)
Biblioteca ID Origem Tipo/Formato Classificação Cutter Registro Volume Status
CNPTIA19682 - 1UPCAP - DD
Fechar
Nenhum registro encontrado para a expressão de busca informada.
 
 

Embrapa
Todos os direitos reservados, conforme Lei n° 9.610
Política de Privacidade
Área Restrita

Embrapa Agricultura Digital
Av. André Tosello, 209 - Barão Geraldo
Caixa Postal 6041- 13083-886 - Campinas, SP
SAC: https://www.embrapa.br/fale-conosco

Valid HTML 4.01 Transitional