BDPA - Bases de Dados da Pesquisa Agropecuária Embrapa
 






Acesso ao texto completo restrito à biblioteca da Embrapa Cerrados. Para informações adicionais entre em contato com biblioteca@embrapa.br.
Registro Completo
Biblioteca(s):  Embrapa Cerrados.
Data corrente:  15/12/2023
Data da última atualização:  15/12/2023
Tipo da produção científica:  Artigo em Periódico Indexado
Autoria:  AIRES, U. R. V.; SILVA, D. D. da; FERNANDES FILHO, E. I.; RODRIGUES, L. N.; ULIANA, E. M.; AMORIM, R. S. S.; RIBEIRO, C. B. de M.; CAMPOS, J. A.
Afiliação:  UILSON RICARDO VENÂNCIO AIRES, UNIVERSIDADE FEDERAL DE VIÇOSA; DEMETRIUS DAVID DA SILVA, Universidade Federal de Viçosa; ELPÍDIO INÁCIO FERNANDES FILHO, Universidade Federal de Viçosa; LINEU NEIVA RODRIGUES, CPAC; EDUARDO MORGAN ULIANA, Universidade Federal de Mato Grosso; RICARDO SANTOS SILVA AMORIM, Universidade Federal de Viçosa; CELSO BANDEIRA DE MELO RIBEIRO, Universidade Federal de Juiz de Fora; JASMINE ALVES CAMPOS, Universidade Federal de Viçosa.
Título:  Machine learning-based modeling of surface sediment concentration in Doce river basin.
Ano de publicação:  2023
Fonte/Imprenta:  Journal of Hydrology, v. 619, 2023. e129320.
ISSN:  0022-1694
Idioma:  Inglês
Conteúdo:  As sediment measurements are laborious and costly, alternative techniques are required to provide such information from more easily measured variables. Thus, the objective of this study was to use machine learning-based models to predict the surface sediment concentration (SSC) in the Doce river basin. The cross-sectional averages of measurements from seven sediment monitoring stations of the Agˆencia Nacional de Aguas ́ e Saneamento Basico ́ located in the Doce riverbed were used as the SSC data. A total of 62 predictor variables were used, which were derived from data on the terrain slope, pedology, land use and cover, precipitation, river discharge and velocity, actual vapotranspiration, surface runoff, soil moisture, temperature, and normalized difference vegetation index. The Boruta and recursive feature elimination variable selection methods were employed to reduce the number of predictor variables. The random forest, Cubist, support vector machine, and eXtreme Gradient Boosting (XGBoost) algorithms as well as least absolute shrinkage and selection operator (LASSO) regression were applied to predict the SSC data. The machine learning algorithms provided superior results, particularly the Cubist and XGBoost models, which exhibited the lowest prediction error and highest efficiency metrics. According to the varImp function from Caret package, the most important predictor variables for the SSC modeling were the daily river discharge on the sediment collection date and tim... Mostrar Tudo
Thesagro:  Água Doce; Rio; Sedimento.
Thesaurus Nal:  Sediment contamination.
Categoria do assunto:  P Recursos Naturais, Ciências Ambientais e da Terra
Marc:  Mostrar Marc Completo
Registro original:  Embrapa Cerrados (CPAC)
Biblioteca ID Origem Tipo/Formato Classificação Cutter Registro Volume Status URL
CPAC37675 - 1UPCAP - DD
Voltar






Ordenar por: RelevânciaAutorTítuloAnoImprime registros no formato resumido      Imprime registros no formato resumido
Registros recuperados : 10
Primeira ... 1 ... Última
1.Imagem marcado/desmarcadoTHAMADA, T. T. Desenvolvimento de ensembles para alerta da ferrugem do cafeeiro em período crítico de progresso da doença. 2016. 139 p. Dissertação (Mestrado) - Faculdade de Engenharia Agrícola, Universidade Estadual de Campinas, Campinas. Orientador: Carlos Alberto Alves Meira.
Tipo: Orientação de Tese de Pós-Graduação
Biblioteca(s): Embrapa Agricultura Digital.
Visualizar detalhes do registroAcesso ao objeto digitalImprime registro no formato completo
2.Imagem marcado/desmarcadoTHAMADA, T. T.; MEIRA, C. A. A. Arquitetura para modelagem e alerta da ferrugem do cafeeiro. In: MOSTRA DE ESTAGIÁRIOS E BOLSISTAS DA EMBRAPA INFORMÁTICA AGROPECUÁRIA, 8., 2012, Campinas. Resumos... Brasília, DF: Embrapa, 2012. p. 31-34.
Tipo: Resumo em Anais de Congresso
Biblioteca(s): Embrapa Agricultura Digital.
Visualizar detalhes do registroAcesso ao objeto digitalImprime registro no formato completo
3.Imagem marcado/desmarcadoTHAMADA, T. T.; MEIRA, C. A. A. Desenvolvimento de ensembles para predição da taxa de progresso da ferrugem do cafeeiro durante seu período crítico de progresso. In: MOSTRA DE ESTAGIÁRIOS E BOLSISTAS DA EMBRAPA INFORMÁTICA AGROPECUÁRIA, 10., 2014, Campinas. Resumos... Brasília, DF: Embrapa, 2014. p. 79-83.
Tipo: Resumo em Anais de Congresso
Biblioteca(s): Embrapa Agricultura Digital.
Visualizar detalhes do registroAcesso ao objeto digitalImprime registro no formato completo
4.Imagem marcado/desmarcadoMEIRA, C. A. A.; THAMADA, T. T.; HOLZHAUSEN, P. P. P. Avaliação do SAFCAFE - sistema de alerta da ferrugem do cafeeiro em três anos agrícolas. In: CONGRESSO BRASILEIRO DE PESQUISAS CAFEEIRAS, 40., 2014, Serra Negra. 40 anos de tecnologias pro café ter melhorias: trabalhos apresentados. Varginha: Fundação Procafé, 2014. p. 220-221.
Tipo: Artigo em Anais de Congresso
Biblioteca(s): Embrapa Agricultura Digital.
Visualizar detalhes do registroAcesso restrito ao objeto digitalImprime registro no formato completo
5.Imagem marcado/desmarcadoTHAMADA, T. T.; DI GIROLAMO NETO, C.; MEIRA, C. A. A. Sistema de alerta da ferrugem do cafeeiro. In: SIMPÓSIO DE PESQUISA DOS CAFÉS DO BRASIL, 8., 2013, Salvador. Pesquisa cafeeira: sustentabilidade e inclusão social: anais. Brasília, DF: Embrapa Café, 2013. Não paginado.
Tipo: Artigo em Anais de Congresso
Biblioteca(s): Embrapa Agricultura Digital.
Visualizar detalhes do registroAcesso ao objeto digitalImprime registro no formato completo
6.Imagem marcado/desmarcadoHOLZHAUSEN, P. P. P.; THAMADA, T. T.; MEIRA, C. A. A. SAFCAFE - sistema de alerta da ferrugem do cafeeiro. In: CONGRESSO BRASILEIRO DE PESQUISAS CAFEEIRAS, 40., 2014, Serra Negra. 40 anos de tecnologias pro café ter melhorias: trabalhos apresentados. Varginha: Fundação Procafé, 2014. p. 181-182.
Tipo: Artigo em Anais de Congresso
Biblioteca(s): Embrapa Agricultura Digital.
Visualizar detalhes do registroAcesso restrito ao objeto digitalImprime registro no formato completo
7.Imagem marcado/desmarcadoDI GIROLAMO NETO, C.; RODRIGUES, L. H. A.; THAMADA, T. T.; MEIRA, C. A. A. Desenvolvimento e seleção de modelos de alerta para a ferrugem do cafeeiro em anos de alta carga pendente de frutos. In: SIMPÓSIO DE PESQUISA DOS CAFÉS DO BRASIL, 8., 2013, Salvador. Pesquisa cafeeira: sustentabilidade e inclusão social: anais. Brasília, DF: Embrapa Café, 2013. Não paginado.
Tipo: Artigo em Anais de Congresso
Biblioteca(s): Embrapa Agricultura Digital.
Visualizar detalhes do registroAcesso ao objeto digitalImprime registro no formato completo
8.Imagem marcado/desmarcadoDI GIROLAMO NETO, C.; RODRIGUES, L. H. A.; THAMADA, T. T.; MEIRA, C. A. A. Potencial de técnicas de mineração de dados para modelos de alerta da ferrugem do cafeeiro. In: CONGRESSO BRASILEIRO DE AGROINFORMÁTICA, 9., 2013, Cuiabá. Agroinformática: inovação para a sustentabilidade do agronegócio brasileiro: anais. Cuiabá: Universidade Federal de Mato Grosso, 2013. Não paginado. SBIAgro 2013.
Tipo: Artigo em Anais de Congresso
Biblioteca(s): Embrapa Agricultura Digital.
Visualizar detalhes do registroAcesso ao objeto digitalImprime registro no formato completo
9.Imagem marcado/desmarcadoHOLZHAUSEN, P. P. P.; THAMADA, T. T.; MEIRA, C. A. A. Implementação de substituição de modelos dentro do sistema de alerta da ferrugem do cafeeiro. In: MOSTRA DE ESTAGIÁRIOS E BOLSISTAS DA EMBRAPA INFORMÁTICA AGROPECUÁRIA, 9., 2013, Campinas. Resumos... Brasília, DF: Embrapa, 2013. p. 177-180.
Tipo: Resumo em Anais de Congresso
Biblioteca(s): Embrapa Agricultura Digital.
Visualizar detalhes do registroAcesso ao objeto digitalImprime registro no formato completo
10.Imagem marcado/desmarcadoLASSO, E.; THAMADA, T. T.; MEIRA, C. A. A.; CORRALES, J. C. Expert system for coffee rust detection based on supervised learning and graph pattern matching. International Journal of Metadata, Semantics and Ontologies, v. 12, n. 1, p. 19-27, 2017.
Tipo: Artigo em Periódico IndexadoCirculação/Nível: A - 2
Biblioteca(s): Embrapa Agricultura Digital.
Visualizar detalhes do registroAcesso restrito ao objeto digitalImprime registro no formato completo
Registros recuperados : 10
Primeira ... 1 ... Última
Nenhum registro encontrado para a expressão de busca informada.
 
 

Embrapa
Todos os direitos reservados, conforme Lei n° 9.610
Política de Privacidade
Área Restrita

Embrapa Agricultura Digital
Av. André Tosello, 209 - Barão Geraldo
Caixa Postal 6041- 13083-886 - Campinas, SP
SAC: https://www.embrapa.br/fale-conosco

Valid HTML 4.01 Transitional