| |
|
|
 | Acesso ao texto completo restrito à biblioteca da Embrapa Cerrados. Para informações adicionais entre em contato com biblioteca@embrapa.br. |
|
Registro Completo |
|
Biblioteca(s): |
Embrapa Cerrados. |
|
Data corrente: |
19/08/2021 |
|
Data da última atualização: |
19/08/2021 |
|
Tipo da produção científica: |
Artigo em Periódico Indexado |
|
Autoria: |
ALTHOFF, D.; RODRIGUES, L. N.; BAZAME, H. C. |
|
Afiliação: |
DANIEL ALTHOFF; LINEU NEIVA RODRIGUES, CPAC; HELIZANI COUTO BAZAME. |
|
Título: |
Uncertainty quantification for hydrological models based on neural networks: the dropout ensemble. |
|
Ano de publicação: |
2021 |
|
Fonte/Imprenta: |
Stochastic Environmental Research and Risk Assessment, v. 35, p. 1051?1067, 2021. |
|
Páginas: |
p. 1051-1067 |
|
DOI: |
https://doi.org/10.1007/s00477-021-01980-8 |
|
Idioma: |
Inglês |
|
Conteúdo: |
Abstract The use of neural networks in hydrology has been frequently undermined by limitations regarding the quantification of uncertainty in predictions. Many authors have proposed different methodologies to overcome these limitations, such as running Monte Carlo simulations, Bayesian approximations, and bootstrapping training samples, which come with computational limitations of their own, and two-step approaches, among others. One less-frequently explored alternative is to repurpose the dropout scheme during inference. Dropout is commonly used during training to avoid overfitting. However, it may also be activated during the testing period to effortlessly provide an ensemble of multiple ??sister?? predictions. This study explores the predictive uncertainty in hydrological models based on neural networks by comparing a multiparameter ensemble to a dropout ensemble. The dropout ensemble shows more reliable coverage of prediction intervals, while the multiparameter ensemble results in sharper prediction intervals. Moreover, for neural network structures with optimal lookback series, both ensemble strategies result in similar average interval scores. The dropout ensemble, however, benefits from requiring only a single calibration run, i.e., a single set of parameters. In addition, it delivers important insight for engineering design and decision-making with no increase in computational cost. Therefore, the dropout ensemble can be easily included in uncertainty analysis routines and even be combined with multiparameter or multimodel alternatives. MenosAbstract The use of neural networks in hydrology has been frequently undermined by limitations regarding the quantification of uncertainty in predictions. Many authors have proposed different methodologies to overcome these limitations, such as running Monte Carlo simulations, Bayesian approximations, and bootstrapping training samples, which come with computational limitations of their own, and two-step approaches, among others. One less-frequently explored alternative is to repurpose the dropout scheme during inference. Dropout is commonly used during training to avoid overfitting. However, it may also be activated during the testing period to effortlessly provide an ensemble of multiple ??sister?? predictions. This study explores the predictive uncertainty in hydrological models based on neural networks by comparing a multiparameter ensemble to a dropout ensemble. The dropout ensemble shows more reliable coverage of prediction intervals, while the multiparameter ensemble results in sharper prediction intervals. Moreover, for neural network structures with optimal lookback series, both ensemble strategies result in similar average interval scores. The dropout ensemble, however, benefits from requiring only a single calibration run, i.e., a single set of parameters. In addition, it delivers important insight for engineering design and decision-making with no increase in computational cost. Therefore, the dropout ensemble can be easily included in uncertainty analysis routin... Mostrar Tudo |
|
Palavras-Chave: |
Modelo hidrológico; Rede neural. |
|
Thesagro: |
Hidrologia. |
|
Categoria do assunto: |
-- |
|
Marc: |
LEADER 02241naa a2200205 a 4500 001 2133739 005 2021-08-19 008 2021 bl uuuu u00u1 u #d 024 7 $ahttps://doi.org/10.1007/s00477-021-01980-8$2DOI 100 1 $aALTHOFF, D. 245 $aUncertainty quantification for hydrological models based on neural networks$bthe dropout ensemble.$h[electronic resource] 260 $c2021 300 $ap. 1051-1067 520 $aAbstract The use of neural networks in hydrology has been frequently undermined by limitations regarding the quantification of uncertainty in predictions. Many authors have proposed different methodologies to overcome these limitations, such as running Monte Carlo simulations, Bayesian approximations, and bootstrapping training samples, which come with computational limitations of their own, and two-step approaches, among others. One less-frequently explored alternative is to repurpose the dropout scheme during inference. Dropout is commonly used during training to avoid overfitting. However, it may also be activated during the testing period to effortlessly provide an ensemble of multiple ??sister?? predictions. This study explores the predictive uncertainty in hydrological models based on neural networks by comparing a multiparameter ensemble to a dropout ensemble. The dropout ensemble shows more reliable coverage of prediction intervals, while the multiparameter ensemble results in sharper prediction intervals. Moreover, for neural network structures with optimal lookback series, both ensemble strategies result in similar average interval scores. The dropout ensemble, however, benefits from requiring only a single calibration run, i.e., a single set of parameters. In addition, it delivers important insight for engineering design and decision-making with no increase in computational cost. Therefore, the dropout ensemble can be easily included in uncertainty analysis routines and even be combined with multiparameter or multimodel alternatives. 650 $aHidrologia 653 $aModelo hidrológico 653 $aRede neural 700 1 $aRODRIGUES, L. N. 700 1 $aBAZAME, H. C. 773 $tStochastic Environmental Research and Risk Assessment$gv. 35, p. 1051?1067, 2021.
Download
Esconder MarcMostrar Marc Completo |
|
Registro original: |
Embrapa Cerrados (CPAC) |
|
|
Biblioteca |
ID |
Origem |
Tipo/Formato |
Classificação |
Cutter |
Registro |
Volume |
Status |
URL |
Voltar
|
|
|
| Registros recuperados : 7 | |
| 2. |  | ROSA, E. P. de A.; SARMENTO, C. M. B.; VEIGA, J. B. da. Avaliação de pastagem em propriedades familiares na zona Bragantina. In: SEMINÁRIO DE INICIAÇÃO CIENTÍFICA DA FCAP, 11.; SEMINÁRIO DE INICIAÇÃO CIENTÍFICA DA EMBRAPA AMAZÔNIA ORIENTAL (AVALIAÇÃO-2001), 5., 2001, Belém, PA. Resumos. Belém, PA: FCAP: Embrapa Amazônia Oriental, 2002. p. 108-110.| Tipo: Artigo em Anais de Congresso |
| Biblioteca(s): Embrapa Amazônia Oriental. |
|    |
| 3. |  | ROSA, E. P. de A.; SARMENTO, C. M. B.; VEIGA, J. B. da. Introdução do gado e de pastagem no sistema cultivo/pousio existente: o desempenho da pastagem. In: SEMINÁRIO DE INICIAÇÃO CIENTIFICA DA FCAP, 10.; SEMINÁRIO DE INICIAÇÃO CIENTIFICA DA EMBRAPA AMAZÔNIA ORIENTAL, 4., 2000, Belém, PA. Resumos. Belém, PA: FCAP, 2000. p. 97-99.| Tipo: Artigo em Anais de Congresso |
| Biblioteca(s): Embrapa Amazônia Oriental. |
|    |
| 4. |  | FERREIRA, A. R.; YARED, J. A. G.; BRIENZA JUNIOR, S.; SANTOS, I. A. dos; ROSA, E. P. de A. Enriquecimento de floresta secundária para melhoria de um sistema agroflorestal sequencial no Nordeste paraense: avaliação de espécies nativas. In: CONGRESSO NACIONAL DE BOTÂNICA, 54.; REUNIÃO AMAZÔNICA DE BOTÂNICA, 3., 2003, Belém, PA. Botânica: desafios da botânica brasileira no novo milênio: inventário, sistematização, conservação e uso da diversidade vegetal: resumos. Belém, PA: Sociedade Botânica do Brasil: UFRA: Museu Paraense Emílio Goeldi: Embrapa Amazônia Oriental, 2003. 1 CD-ROM.| Tipo: Resumo em Anais de Congresso |
| Biblioteca(s): Embrapa Amazônia Oriental. |
|    |
| 5. |  | LOPEZ, C. V. da C.; BRIENZA JUNIOR, S.; LEÃO, N. V. M.; FERREIRA, A. R.; ROSA, E. P. de A.; SANTOS, I. A. dos. Fenologia de espécies da floresta secundária potencialmente acumuladoras de fósforo. In: CONGRESSO BRASILEIRO DE SISTEMAS AGROFLORESTAIS, 4., 2002, Ilhéus. Anais. Ilhéus: CEPLAC-CEPEC, 2002. Resumo expandido 1-040.| Tipo: Artigo em Anais de Congresso |
| Biblioteca(s): Embrapa Amazônia Oriental. |
|    |
| 6. |  | FERREIRA, A. R.; BRIENZA JUNIOR, S.; ROSA, E. P. de A.; LÓPEZ, C. V. da C.; SANTOS, I. A. dos; YARED, J. A. G.; PEREIRA, C. A. Germinação, sobrevivência e crescimento em altura de Acacia mangium Willd. e Inga edulis num sistema agroflorestal de derruba e queima na Amazônia Oriental. In: CONGRESSO BRASILEIRO DE SISTEMAS AGROFLORESTAIS, 4., 2002, Ilhéus. Resumos expandidos. IIhéus: CEPLAC-CEPEC, 2002. 4 f. Cópia de trabalho editado em CD-ROM.| Tipo: Artigo em Anais de Congresso |
| Biblioteca(s): Embrapa Amazônia Oriental. |
|    |
| 7. |  | ROSA, E. P. de A.; BRIENZA JUNIOR, S.; SANTOS, I. A. dos; LOPEZ, C. V. da C.; FERREIRA, A. R.; YARED, J. A. G. Avaliações iniciais do crescimento e sobrevivência de espécies nativas para a melhoria de um sistema agroflorestal seqüencial no nordeste paraense. In: CONGRESSO BRASILEIRO DE SISTEMAS AGROFLORESTAIS, 4., 2002, Ilhéus, BA. Resumo expandido. Ilhéus: CEPLAC-CEPEC, 2002.| Tipo: Artigo em Anais de Congresso |
| Biblioteca(s): Embrapa Amazônia Oriental. |
|    |
| Registros recuperados : 7 | |
|
| Expressão de busca inválida. Verifique!!! |
|
|