| |
|
|
 | Acesso ao texto completo restrito à biblioteca da Embrapa Soja. Para informações adicionais entre em contato com valeria.cardoso@embrapa.br. |
|
Registro Completo |
|
Biblioteca(s): |
Embrapa Soja. |
|
Data corrente: |
23/04/2012 |
|
Data da última atualização: |
02/04/2025 |
|
Tipo da produção científica: |
Artigo em Periódico Indexado |
|
Autoria: |
FREITAS, A. R.; FERREIRA, R. de P.; MOREIRA, A. |
|
Afiliação: |
ALFREDO RIBEIRO FREITAS, UFSCAR; REINALDO DE PAULA FERREIRA, CPPSE; ADONIS MOREIRA, CNPSO. |
|
Título: |
Análise de dados de medidas repetidas por meio do modelo linear geral e do modelo misto. |
|
Ano de publicação: |
2011 |
|
Fonte/Imprenta: |
Revista de Ciências Agrárias, v. 54, n. 3, p. 214-224, Set./Dez. 2011. |
|
DOI: |
10.4322/rca.2012.017 |
|
Idioma: |
Português |
|
Conteúdo: |
O delineamento em blocos casualizados com parcelas divididas (split-plot) é um dos mais utilizados na agricultura. São muito comuns situações em que medidas repetidas avaliadas na parcela ao longo do tempo sejam analisadas como split-plot e, dependendo da estrutura de covariância que modela os erros dentro da parcela, tanto o modelo linear geral (GLM) quanto o modelo misto (MIXED) do SAS podem ser utilizados para análise. O objetivo foi avaliar as diferenças entre os procedimentos GLM e MIXED em blocos casualizados, nos quais as subparcelas são analisadas como medidas repetidas. Utilizou-se a análise de dados de produção de matéria seca (PMS) de um experimento em blocos casualizados de alfafa com 20 cortes, realizados quando aproximadamente 10% das plantas estavam em florescimento. O GLM não permite a modelagem da estrutura de covariância dos dados, porém é apropriado para ajustar modelos lineares gerais pelo método dos quadrados, produzindo resultados corretos em análises de medidas repetidas quando a condição de circularidade e esfericidade é atendida, isto é, a matriz de covariâncias é simetria composta (CS); o procedimento MIXED apresenta matriz mais apropriada do que a CS, por disponibilizar cerca de 40 tipos de estruturas de covariâncias, quando os dados têm distribuição normal. Data analysis of repeated measures by means of general linear model and mixed model. Split-plot randomized blocks are widely used in agricultural experiments. Situations where evaluations in the plot over time are considered as split-plots and analyzed as repeated measures are quite common. Depending on the covariance structure that modulates the errors within the plot, both the general linear model (GLM) and the mixed model (MIXED) of the Standard Linear Model can be used for analysis. The purpose of this research was to evaluate the fundamental differences between the GLM and MIXED procedures in randomized blocks where split-plots are analyzed as repeated measures. The data analysis of the dry matter production (DMP) of alfalfa (Medicago sativa L.) of twenty randomized cuts was utilized when approximately 10% of the plants were in blossom. The GLM model does not allow the modeling of data covariance structure; however, it is appropriate to adjust general linear models through the method of squares, producing correct results in repeated measures analyses when circularity and sphericity condition is met, that is, the covariance matrix is of compound symmetry (CS), while the MIXED model presents more appropriated covariance matrix than the CS, since it provides about 40 types of covariance structures when data are normally distributed. MenosO delineamento em blocos casualizados com parcelas divididas (split-plot) é um dos mais utilizados na agricultura. São muito comuns situações em que medidas repetidas avaliadas na parcela ao longo do tempo sejam analisadas como split-plot e, dependendo da estrutura de covariância que modela os erros dentro da parcela, tanto o modelo linear geral (GLM) quanto o modelo misto (MIXED) do SAS podem ser utilizados para análise. O objetivo foi avaliar as diferenças entre os procedimentos GLM e MIXED em blocos casualizados, nos quais as subparcelas são analisadas como medidas repetidas. Utilizou-se a análise de dados de produção de matéria seca (PMS) de um experimento em blocos casualizados de alfafa com 20 cortes, realizados quando aproximadamente 10% das plantas estavam em florescimento. O GLM não permite a modelagem da estrutura de covariância dos dados, porém é apropriado para ajustar modelos lineares gerais pelo método dos quadrados, produzindo resultados corretos em análises de medidas repetidas quando a condição de circularidade e esfericidade é atendida, isto é, a matriz de covariâncias é simetria composta (CS); o procedimento MIXED apresenta matriz mais apropriada do que a CS, por disponibilizar cerca de 40 tipos de estruturas de covariâncias, quando os dados têm distribuição normal. Data analysis of repeated measures by means of general linear model and mixed model. Split-plot randomized blocks are widely used in agricultural experiments. Situations where evaluations in th... Mostrar Tudo |
|
Palavras-Chave: |
Anállise estatística. |
|
Thesagro: |
Alfafa; Matéria seca. |
|
Thesaurus Nal: |
Alfalfa; Dry matter accumulation; Statistical analysis. |
|
Categoria do assunto: |
X Pesquisa, Tecnologia e Engenharia |
|
Marc: |
LEADER 03397naa a2200229 a 4500 001 1922826 005 2025-04-02 008 2011 bl uuuu u00u1 u #d 024 7 $a10.4322/rca.2012.017$2DOI 100 1 $aFREITAS, A. R. 245 $aAnálise de dados de medidas repetidas por meio do modelo linear geral e do modelo misto.$h[electronic resource] 260 $c2011 520 $aO delineamento em blocos casualizados com parcelas divididas (split-plot) é um dos mais utilizados na agricultura. São muito comuns situações em que medidas repetidas avaliadas na parcela ao longo do tempo sejam analisadas como split-plot e, dependendo da estrutura de covariância que modela os erros dentro da parcela, tanto o modelo linear geral (GLM) quanto o modelo misto (MIXED) do SAS podem ser utilizados para análise. O objetivo foi avaliar as diferenças entre os procedimentos GLM e MIXED em blocos casualizados, nos quais as subparcelas são analisadas como medidas repetidas. Utilizou-se a análise de dados de produção de matéria seca (PMS) de um experimento em blocos casualizados de alfafa com 20 cortes, realizados quando aproximadamente 10% das plantas estavam em florescimento. O GLM não permite a modelagem da estrutura de covariância dos dados, porém é apropriado para ajustar modelos lineares gerais pelo método dos quadrados, produzindo resultados corretos em análises de medidas repetidas quando a condição de circularidade e esfericidade é atendida, isto é, a matriz de covariâncias é simetria composta (CS); o procedimento MIXED apresenta matriz mais apropriada do que a CS, por disponibilizar cerca de 40 tipos de estruturas de covariâncias, quando os dados têm distribuição normal. Data analysis of repeated measures by means of general linear model and mixed model. Split-plot randomized blocks are widely used in agricultural experiments. Situations where evaluations in the plot over time are considered as split-plots and analyzed as repeated measures are quite common. Depending on the covariance structure that modulates the errors within the plot, both the general linear model (GLM) and the mixed model (MIXED) of the Standard Linear Model can be used for analysis. The purpose of this research was to evaluate the fundamental differences between the GLM and MIXED procedures in randomized blocks where split-plots are analyzed as repeated measures. The data analysis of the dry matter production (DMP) of alfalfa (Medicago sativa L.) of twenty randomized cuts was utilized when approximately 10% of the plants were in blossom. The GLM model does not allow the modeling of data covariance structure; however, it is appropriate to adjust general linear models through the method of squares, producing correct results in repeated measures analyses when circularity and sphericity condition is met, that is, the covariance matrix is of compound symmetry (CS), while the MIXED model presents more appropriated covariance matrix than the CS, since it provides about 40 types of covariance structures when data are normally distributed. 650 $aAlfalfa 650 $aDry matter accumulation 650 $aStatistical analysis 650 $aAlfafa 650 $aMatéria seca 653 $aAnállise estatística 700 1 $aFERREIRA, R. de P. 700 1 $aMOREIRA, A. 773 $tRevista de Ciências Agrárias$gv. 54, n. 3, p. 214-224, Set./Dez. 2011.
Download
Esconder MarcMostrar Marc Completo |
|
Registro original: |
Embrapa Soja (CNPSO) |
|
|
Biblioteca |
ID |
Origem |
Tipo/Formato |
Classificação |
Cutter |
Registro |
Volume |
Status |
URL |
Voltar
|
|
|
| Registros recuperados : 4 | |
| 1. |  | GONÇALVES, R. O.; FARIAS, I. F. de; SILVA, M. F. S.; PESSOA, C. Ó; ZOCOLO, G. J.; ZAMPIERI, D.; LEMOS, T. L. G. de; MONTE, F. J. Q. Preparation, spectral characterization and anticancer potential of cinnamic esters. Journal of the Brazilian Chemical Society, v. 32, n. 10, p. 1931-1942, 2021.| Tipo: Artigo em Periódico Indexado | Circulação/Nível: A - 2 |
| Biblioteca(s): Embrapa Agroindústria Tropical. |
|    |
| 2. |  | LUZ, L. R.; PORTO, D. D.; CASTRO, C. B.; SILVA, M. F. S.; ALVES FILHO, E. G. A.; CANUTO, K. M.; BRITO, E. S. de; BECKER, H.; PESSOA, C. O.; ZOCOLO, G. J. Metabolomic profile of Schinopsis brasiliensis via UPLC-QTOF-MS for identification of biomarkers and evaluation of its cytotoxic potential. Journal of Chromatography B, v. 1099, p. 97-109, 2018.| Tipo: Artigo em Periódico Indexado | Circulação/Nível: A - 1 |
| Biblioteca(s): Embrapa Agroindústria Tropical; Embrapa Semiárido. |
|    |
| 3. |  | GUEDES, J. A. C.; ALVES FILHO, E. G.; RODRIGUES, T. H. S.; SILVA, M. F. S.; SOUZA, F. V. D.; SILVA, L. M. A. e; ALVES, R. E.; CANUTO, K. M.; BRITO, E. S. de; PESSOA, C. O.; NASCIMENTO, R. F.; ZOCOLO, G. J. Metabolic profile and cytotoxicity of non-polar extracts of pineapple leaves and chemometric analysis of different pineapple cultivars. Industrial Crops and Products, v. 124, p. 466-474, 2018.| Tipo: Artigo em Periódico Indexado | Circulação/Nível: A - 1 |
| Biblioteca(s): Embrapa Agroindústria Tropical; Embrapa Mandioca e Fruticultura. |
|    |
| 4. |  | PINTO, A. C. S.; SILVA, L. F. R. e; CAVALCANTI, B. C.; MELO, M. R. S.; CHAVES, F. C. M.; LOTUFO, L. V. C.; MORAIS, M. O. de; ANDRADE-NETO, V. F.; TADEI, W. P.; PESSOA, C. O.; VIEIRA, P. P. R.; POHLIT, A. M. New antimalarial and cytotoxic 4-nerolidylcatechol derivatives. European Journal of Medicinal Chemistry, v. 44, n. 6, p. 2731-2735, June 2009.| Tipo: Artigo em Periódico Indexado |
| Biblioteca(s): Embrapa Amazônia Ocidental. |
|    |
| Registros recuperados : 4 | |
|
| Expressão de busca inválida. Verifique!!! |
|
|