|
|
 | Acesso ao texto completo restrito à biblioteca da Embrapa Clima Temperado. Para informações adicionais entre em contato com cpact.biblioteca@embrapa.br. |
Registro Completo |
Biblioteca(s): |
Embrapa Clima Temperado. |
Data corrente: |
29/10/2021 |
Data da última atualização: |
29/10/2021 |
Tipo da produção científica: |
Artigo em Periódico Indexado |
Autoria: |
AGOSTINETTO, D.; SOUZA, E. A.; ANDRES, A.; ULGUIM A. R.; SCHIMITZ, M. F.; GOULART, F. A. P. |
Afiliação: |
DIRCEU AGOSTINETTO; EDNA A. SOUZA; ANDRE ANDRES, CPACT; ANDRÉ R. ULGUIM; MAICON F. SCHIMITZ; FRANCISCO A.P. GOULART. |
Título: |
Period prior to interference of barnyardgrass is modified due to the spraying of cyhalofop-butyl alone or associated with penoxsulam in paddy rice crop. |
Ano de publicação: |
2021 |
Fonte/Imprenta: |
Advances in Weed Science, V. 39, p. 1-6, 2021. |
ISSN: |
2675-9462 |
DOI: |
https://doi.org/10.51694/AdvWeedSci/2021;39:00001 |
Idioma: |
Inglês |
Conteúdo: |
Weed occurrence is one of the main obstacles to the expression of the production potential of crops. Competition for one or more limiting environmental resources (CO2, water, light, and nutrients) can generate irreversible losses to crops, and there may be no recovery of their development even after the removal of the stress caused by weeds or inclusion of limiting resources to the environment (Karimmojeni et al., 2014). The average losses in rice yield due to the coexistence with weeds are estimated between 40 and 60%, reaching up to 96% in cases of lack of control (Chauhan and Johnson, 2011). The degree of weed interference is determined according to the species, density, location, availability of resources, and emergence period relative to the crop (Datta et al., 2017). However, the losses caused to the crop can be altered as the period in which the weed community coexists with the crop changes. Crop and weeds can live together at the beginning of development for a certain period without causing quantitative or qualitative losses to the crop (Silva et al., 2014). This stage, called the period prior to interference (PPI), corresponds to the period after emergence or sowing in which the crop can coexist with the weed community without negatively affecting yield or other characteristics (Silva et al., 2014). However, control measures must be adopted at the end of this period so that crop yield is not compromised (Silva and Durigan, 2006). Studies of competition periods conducted with the rice crop have shown that PPI duration can vary from 7 to 26 DAE (Silva and Durigan, 2006; Zhang et al., 2003). Variations in topography, climate, crop genetics, and management practices affect weed composition, weed density, and emergence time relative to the crop and, consequently, affect PPI (Korres and Norsworthy, 2015). This variability needs to be understood for the better use of the integrated weed management of each environment. Among the weed species in rice fields, barnyardgrass (Echinochloa spp.) stands out relative to the others due to its highly competitive ability compared to the crop (Agostinetto et al., 2008). The importance of this weed is due to its morphophysiological similarities with rice plants, denoting the potential for yield losses because of competition, as well as high infestation levels and a wide distribution in commercial crops (Andres et al., 2007). MenosWeed occurrence is one of the main obstacles to the expression of the production potential of crops. Competition for one or more limiting environmental resources (CO2, water, light, and nutrients) can generate irreversible losses to crops, and there may be no recovery of their development even after the removal of the stress caused by weeds or inclusion of limiting resources to the environment (Karimmojeni et al., 2014). The average losses in rice yield due to the coexistence with weeds are estimated between 40 and 60%, reaching up to 96% in cases of lack of control (Chauhan and Johnson, 2011). The degree of weed interference is determined according to the species, density, location, availability of resources, and emergence period relative to the crop (Datta et al., 2017). However, the losses caused to the crop can be altered as the period in which the weed community coexists with the crop changes. Crop and weeds can live together at the beginning of development for a certain period without causing quantitative or qualitative losses to the crop (Silva et al., 2014). This stage, called the period prior to interference (PPI), corresponds to the period after emergence or sowing in which the crop can coexist with the weed community without negatively affecting yield or other characteristics (Silva et al., 2014). However, control measures must be adopted at the end of this period so that crop yield is not compromised (Silva and Durigan, 2006). Studies of competition periods condu... Mostrar Tudo |
Palavras-Chave: |
Weed competition is one of the main constraints to rice yield. |
Thesaurus Nal: |
Genetic background. |
Categoria do assunto: |
-- |
Marc: |
LEADER 03213naa a2200229 a 4500 001 2135704 005 2021-10-29 008 2021 bl uuuu u00u1 u #d 022 $a2675-9462 024 7 $ahttps://doi.org/10.51694/AdvWeedSci/2021;39:00001$2DOI 100 1 $aAGOSTINETTO, D. 245 $aPeriod prior to interference of barnyardgrass is modified due to the spraying of cyhalofop-butyl alone or associated with penoxsulam in paddy rice crop.$h[electronic resource] 260 $c2021 520 $aWeed occurrence is one of the main obstacles to the expression of the production potential of crops. Competition for one or more limiting environmental resources (CO2, water, light, and nutrients) can generate irreversible losses to crops, and there may be no recovery of their development even after the removal of the stress caused by weeds or inclusion of limiting resources to the environment (Karimmojeni et al., 2014). The average losses in rice yield due to the coexistence with weeds are estimated between 40 and 60%, reaching up to 96% in cases of lack of control (Chauhan and Johnson, 2011). The degree of weed interference is determined according to the species, density, location, availability of resources, and emergence period relative to the crop (Datta et al., 2017). However, the losses caused to the crop can be altered as the period in which the weed community coexists with the crop changes. Crop and weeds can live together at the beginning of development for a certain period without causing quantitative or qualitative losses to the crop (Silva et al., 2014). This stage, called the period prior to interference (PPI), corresponds to the period after emergence or sowing in which the crop can coexist with the weed community without negatively affecting yield or other characteristics (Silva et al., 2014). However, control measures must be adopted at the end of this period so that crop yield is not compromised (Silva and Durigan, 2006). Studies of competition periods conducted with the rice crop have shown that PPI duration can vary from 7 to 26 DAE (Silva and Durigan, 2006; Zhang et al., 2003). Variations in topography, climate, crop genetics, and management practices affect weed composition, weed density, and emergence time relative to the crop and, consequently, affect PPI (Korres and Norsworthy, 2015). This variability needs to be understood for the better use of the integrated weed management of each environment. Among the weed species in rice fields, barnyardgrass (Echinochloa spp.) stands out relative to the others due to its highly competitive ability compared to the crop (Agostinetto et al., 2008). The importance of this weed is due to its morphophysiological similarities with rice plants, denoting the potential for yield losses because of competition, as well as high infestation levels and a wide distribution in commercial crops (Andres et al., 2007). 650 $aGenetic background 653 $aWeed competition is one of the main constraints to rice yield 700 1 $aSOUZA, E. A. 700 1 $aANDRES, A. 700 1 $aULGUIM A. R. 700 1 $aSCHIMITZ, M. F. 700 1 $aGOULART, F. A. P. 773 $tAdvances in Weed Science, V. 39, p. 1-6, 2021.
Download
Esconder MarcMostrar Marc Completo |
Registro original: |
Embrapa Clima Temperado (CPACT) |
|
Biblioteca |
ID |
Origem |
Tipo/Formato |
Classificação |
Cutter |
Registro |
Volume |
Status |
URL |
Voltar
|
|
Registros recuperados : 10 | |
3. |  | SADER, M. A.; SCVORTZOFF, M. V.; SANTOS, L. A. C. dos; VIEIRA, M. L. C.; DORNELAS, M. C.; MELO, N. F. de; PEDROSA-HARAND, A. Análise do satelitoma em Passiflora L. (Passifloraceae). In: SIMPÓSIO NORTE E NORDESTE DE BIOINFORMÁTICA, 3., 2018, Recife. Big data: desafios da bioinformática. Recife: UFPE, 2018. p. 57Tipo: Resumo em Anais de Congresso |
Biblioteca(s): Embrapa Semiárido. |
|    |
4. |  | SILVA, S. C.; MENDES, S.; MORAES, A. P.; MARQUES, A.; MIRKOV, T. E.; IGLESIAS, D. J.; TALÓN, M.; SOARES FILHO, W. dos S.; GUERRA, M.; PEDROSA-HARAND, A. The chromosomes of citrus: from a unifying nomenclature to the evolution of karyotypes. In: INTERNATIONAL CITRUS CONGRESS, 22., 2012.Valencia. Book of abstracts. Valencia: International Society of Citriculture; Instituto Valenciano de Investigaciones Agrarias; Fundación Agroalimed, 2012. Documento eletrônico. S03006.Tipo: Resumo em Anais de Congresso |
Biblioteca(s): Embrapa Mandioca e Fruticultura. |
|    |
5. |  | SADER, M.; VAIO, M.; SANTOS, L. A. C.; DORNELAS, M. C.; VIEIRA, M. L. C.; MELO, N. F. de; PEDROSA-HARAND, A. Large vs small genomes in Passifora: the infuence of the mobilome and the satellitome. Planta, v. 253, n. 4, 2021.Tipo: Artigo em Periódico Indexado | Circulação/Nível: A - 1 |
Biblioteca(s): Embrapa Semiárido. |
|    |
6. |  | BRASILEIRO-VIDAL, A. C.; BORTOLETI, K. C. A.; BENKO-ISEPPON, A. M.; VASCONCELOS, E. V. V.; FONSÊCA, A.; PEDROSA-HARAND, A.; OLIVEIRA, A. R. S.; BELARMINO, L. C.; AMORIM, L. L. B.; ABDELNOOR, R. V.; PANDOLFI, V.; MELO, N. F. Citogenética comparativa em leguminosas cultivadas. Journal of Basic & Apllied Genetics, v. 51, Supp., p. S19-S20, 2011. Edição dos anais do XL CONGRESO ARGENTINO DE GENÉTICA, III SIMPÓSIO LATINOAMERICANO DE CITOGENÉTICA Y EVOLUCIÓN, I JORNADAS SAG-NEA, Buenos Aires, 2011.Tipo: Artigo em Anais de Congresso |
Biblioteca(s): Embrapa Soja. |
|    |
7. |  | SADER M. A.; DIAS, Y.; MUNHOZ, C.; PENHA, H.; AMORIM, B. S.; COSTA, L.; VAIO, M.; SANTOS L. A. C.; DORNELAS, M. C.; BERGES, H.; MELO, N. F. de; SOUZA, G.; VIEIRA, M. L.; PEDROSA-HARAND, A. PS-P-1679 Chromosome evolution in Passiflora: from chromosome numbers to single-copy and repetitive DNA sequences. In: INTERNATIONAL CHROMOSOME CONFERENCE, 22., 2018, Prague, Czech Republic. Abstracts... Prague, Czech Republic: European Cooperation in Science and Technology, 2018.Tipo: Resumo em Anais de Congresso |
Biblioteca(s): Embrapa Semiárido. |
|    |
8. |  | GEPTS, P.; ARAGÃO, F. J. L.; BARROS, E. de; BLAIR, M. W.; BRONDANI, R.; BROWGHTON, W.; GALASSO, I.; HERNÁNDEZ, G.; KAMI, J.; LARIGUET, P.; MCCLEAN, P.; MELOTTO, M.; MIKLAS, P.; PAULS, P.; PEDROSA HARAND, A.; PORCH, T.; SÁNCHEZ, F.; SPARVOLI, F.; YU, K. Genomics of Phaseolus beans, a major source of dietary protein and micronutrients in the tropics. In: MOORE, P. H.; MING, R. Ed.). Genomics of tropical crop plants. New York: Springer Sciences, 2008. )Plant genetics and genomics: crops and models, 1). p. 113-143.Tipo: Capítulo em Livro Técnico-Científico |
Biblioteca(s): Embrapa Arroz e Feijão; Embrapa Recursos Genéticos e Biotecnologia. |
|    |
9. |  | BENKO-ISEPPON, A. M.; KIDO, E. A.; PANDOLFI, V.; BARBOSA, P. K. A; BELARMINO, L. C.; MONTE, S. J. H. do; BRANDÃO, R. M. S. de; ARAUJO, A. de S.; CASTRO, J. A. F. de; SOARES-CAVALCANTI, N. da M.; SILVA, A. R. da; CALSA JUNIOR, T.; ROCHA, M. de M.; WINTER, P.; KAHL, G.; ROTTER, B.; HORRES, R.; MOLINA, C.; JUNGMANN, R.; AMORIM, L. L. B.; ONOFRE, A. V. C.; FERREIRA-NETO, J. R. C.; GRANJEIRO, T. B.; LIMA, A. S.; LOBO, M. D. P.; HOULLOU-KIDO, L. M.; CARVALHO, R. de; WANDERLEY-NOGUEIRA, A. C.; BARROS, P. dos S.; VIEIRA-MELLO, G. S.; BRASILEIRO-VIDAL, A. C.; BORTOLETI, K. C. de A.; PEDROSA-HARAND, A.; ANDRADE, P. P. de; ANDRADE, G. P. de; PIO-RIBEIRO, G.; SITTOLIN, I. M.; FREIRE FILHO, F. R. Brazilian cowpea transcriptome project: over 20 million expressed sequence tags to understand salinity and virus resistance. In: CONGRESSO BRASILEIRO DE BIOTECNOLOGIA, 3., 2010. Fortaleza. Programa e resumos. Brasília, DF: SBBiotec, 2010. p. 97-98.Tipo: Resumo em Anais de Congresso |
Biblioteca(s): Embrapa Meio-Norte. |
|    |
10. |  | KIDO, E. A.; PANDOLFI, V.; BARBOSA, P. K. A.; SILVA, L. C. B. da; SILVA, A. B. da; MONTE, S. J. H. do; BRANDÃO, R. M. S. de S.; ARAUJO, A. de S.; CASTRO, J. A. F. de; SOARES-CAVALCANTI, N. da M.; CALSA-JUNIOR, T.; ROCHA, M. M.; WINTER, P.; KAHL, G.; ROTTER, B.; HORRES, R.; MOLINA, C.; JUNGMANN, R.; AMORIM, L. L. B.; ONOFRE, A. V. C.; FARIAS NETO, J. C.; GRANJEIRO, T. B.; LIMA, A. S.; LOBO, M. D. P.; HOULLOU-KIDO, L. M.; CARVALHO, R. de; WANDERLEY-NOGUEIRA, A. C.; BARROS, P. dos S.; VIEIRA-MELLO, G. S.; BRASILEIRO-VIDAL, A. C.; BORTOLETI, K. C. de A.; PEDROSA-HARAND, A.; ANDRADE, P. P. de; ANDRADE, G. P. de; PIO-RIBEIRO, G.; SITTOLIN, I. M.; FREIRE FILHO, F. R.; CASTRO, L. A. B. de; BENKO-ISEPPON, A. M. Brazilian cowpea transcriptome project: over five million expressed sequence tags to understand salinity and virus resistance. In: CONGRESSO BRASILEIRO DE FISIOLOGIA VEGETAL, 12., 2009, Fortaleza. Desafios para a produção de alimentos e bioenergia: livro de resumos. Fortaleza: SBFV: UFC: Embrapa Agroindústria Tropical, 2009. p. 25-26. Resumo 61.Tipo: Resumo em Anais de Congresso |
Biblioteca(s): Embrapa Meio-Norte. |
|    |
Registros recuperados : 10 | |
|
Expressão de busca inválida. Verifique!!! |
|
|