|
|
 | Acesso ao texto completo restrito à biblioteca da Embrapa Cerrados. Para informações adicionais entre em contato com biblioteca@embrapa.br. |
Registro Completo |
Biblioteca(s): |
Embrapa Cerrados. |
Data corrente: |
07/12/2021 |
Data da última atualização: |
07/12/2021 |
Tipo da produção científica: |
Artigo em Periódico Indexado |
Autoria: |
KUCK, T. N.; SILVA FILHO, P. F. F.; SANO, E. E.; BISPO, P. da C.; SHIGUEMORI, E. H.; DALAGNOL, R. |
Afiliação: |
TAHISA NEITZEL KUCK; PAULO FERNANDO FERREIRA SILVA FILHO; EDSON EYJI SANO, CPAC; POLYANNA DA CONCEIÇÃO BISPO; ELCIO HIDEITI SHIGUEMORI; RICARDO DALAGNOL. |
Título: |
Change Detection of Selective Logging in the Brazilian Amazon Using X Band SAR Data and Pre-Trained Convolutional Neural Networks. |
Ano de publicação: |
2021 |
Fonte/Imprenta: |
Remote Sensing, v. 13, n. 4944, 2021. |
Idioma: |
Inglês |
Conteúdo: |
Abstract: It is estimated that, in the Brazilian Amazon, forest degradation contributes three times more than deforestation for the loss of gross above-ground biomass. Degradation, in particular those caused by selective logging, result in features whose detection is a challenge to remote sensing, due to its size, space configuration, and geographical distribution. From the available remote sensing technologies, SAR data allow monitoring even during adverse atmospheric conditions. The aim of this study was to test different pre-trained models of Convolutional Neural Networks (CNNs) for change detection associated with forest degradation in bitemporal products obtained from a pair of SAR COSMO-SkyMed images acquired before and after logging in the Jamari National Forest. This area contains areas of legal and illegal logging, and to test the influence of the speckle effect on the result of this classification by applying the classification methodology on previously filtered and unfiltered images, comparing the results. A method of cluster detections was also presented, based on density-based spatial clustering of applications with noise (DBSCAN), which would make it possible, for example, to guide inspection actions and allow the calculation of the intensity of exploitation (IEX). Although the differences between the tested models were in the order of less than 5%, the tests on the RGB composition (where R = coefficient of variation; G = minimum values; and B = gradient) presented a slightly better performance compared to the others in terms of the number of correct classifications for selective logging, in particular using the model Painters (accuracy = 92%) even in the generalization tests, which presented an overall accuracy of 87%, and in the test on RGB from the unfiltered image pair (accuracy of 90%). These results indicate that multitemporal X-band SAR data have the potential for monitoring selective logging in tropical forests, especially in combination with CNN techniques. MenosAbstract: It is estimated that, in the Brazilian Amazon, forest degradation contributes three times more than deforestation for the loss of gross above-ground biomass. Degradation, in particular those caused by selective logging, result in features whose detection is a challenge to remote sensing, due to its size, space configuration, and geographical distribution. From the available remote sensing technologies, SAR data allow monitoring even during adverse atmospheric conditions. The aim of this study was to test different pre-trained models of Convolutional Neural Networks (CNNs) for change detection associated with forest degradation in bitemporal products obtained from a pair of SAR COSMO-SkyMed images acquired before and after logging in the Jamari National Forest. This area contains areas of legal and illegal logging, and to test the influence of the speckle effect on the result of this classification by applying the classification methodology on previously filtered and unfiltered images, comparing the results. A method of cluster detections was also presented, based on density-based spatial clustering of applications with noise (DBSCAN), which would make it possible, for example, to guide inspection actions and allow the calculation of the intensity of exploitation (IEX). Although the differences between the tested models were in the order of less than 5%, the tests on the RGB composition (where R = coefficient of variation; G = minimum values; and B = gradient) prese... Mostrar Tudo |
Palavras-Chave: |
Corte seletivo; Radar de abertura sintética; Rede neural. |
Thesagro: |
Sensoriamento Remoto. |
Categoria do assunto: |
-- |
Marc: |
LEADER 02728naa a2200229 a 4500 001 2137283 005 2021-12-07 008 2021 bl uuuu u00u1 u #d 100 1 $aKUCK, T. N. 245 $aChange Detection of Selective Logging in the Brazilian Amazon Using X Band SAR Data and Pre-Trained Convolutional Neural Networks.$h[electronic resource] 260 $c2021 520 $aAbstract: It is estimated that, in the Brazilian Amazon, forest degradation contributes three times more than deforestation for the loss of gross above-ground biomass. Degradation, in particular those caused by selective logging, result in features whose detection is a challenge to remote sensing, due to its size, space configuration, and geographical distribution. From the available remote sensing technologies, SAR data allow monitoring even during adverse atmospheric conditions. The aim of this study was to test different pre-trained models of Convolutional Neural Networks (CNNs) for change detection associated with forest degradation in bitemporal products obtained from a pair of SAR COSMO-SkyMed images acquired before and after logging in the Jamari National Forest. This area contains areas of legal and illegal logging, and to test the influence of the speckle effect on the result of this classification by applying the classification methodology on previously filtered and unfiltered images, comparing the results. A method of cluster detections was also presented, based on density-based spatial clustering of applications with noise (DBSCAN), which would make it possible, for example, to guide inspection actions and allow the calculation of the intensity of exploitation (IEX). Although the differences between the tested models were in the order of less than 5%, the tests on the RGB composition (where R = coefficient of variation; G = minimum values; and B = gradient) presented a slightly better performance compared to the others in terms of the number of correct classifications for selective logging, in particular using the model Painters (accuracy = 92%) even in the generalization tests, which presented an overall accuracy of 87%, and in the test on RGB from the unfiltered image pair (accuracy of 90%). These results indicate that multitemporal X-band SAR data have the potential for monitoring selective logging in tropical forests, especially in combination with CNN techniques. 650 $aSensoriamento Remoto 653 $aCorte seletivo 653 $aRadar de abertura sintética 653 $aRede neural 700 1 $aSILVA FILHO, P. F. F. 700 1 $aSANO, E. E. 700 1 $aBISPO, P. da C. 700 1 $aSHIGUEMORI, E. H. 700 1 $aDALAGNOL, R. 773 $tRemote Sensing$gv. 13, n. 4944, 2021.
Download
Esconder MarcMostrar Marc Completo |
Registro original: |
Embrapa Cerrados (CPAC) |
|
Biblioteca |
ID |
Origem |
Tipo/Formato |
Classificação |
Cutter |
Registro |
Volume |
Status |
URL |
Voltar
|
|
Registros recuperados : 2 | |
1. |  | AIDAR, S. de T.; CHAVES, A. R. de M.; FERNANDES JUNIOR, P. I.; OLIVEIRA, M. de S.; COSTA NETO, B. P. da; CALSA JUNIOR, T.; MORGANTE, C. V. Vegetative desiccation tolerance of Tripogon spicatus (Poaceae) from the tropical semiarid region of northeastern Brazil. Functional Plant Biology, v, 44, n. 11, p. 1124-1133, 2017.Tipo: Artigo em Periódico Indexado | Circulação/Nível: A - 2 |
Biblioteca(s): Embrapa Semiárido. |
|    |
2. |  | LIMA, S. C. B. da A.; SILVA, F. A. C.; PENA, E. P. N.; OLIVEIRA, M. de S.; MELO, N. F. de; ISEPPON, A. M. B.; PANDOLFI, V.; TERCÍLIO CALSA JÚNIOR. Isolamento do proteoma solúvel de folha e raiz de Stylosanthes scabra vogel. para análise diferencial. In: ENCONTRO DE GENÉTICA DO NORDESTE, 21., 2016, Recife. Anais... Ribeirão Preto: SBG; Recife: UFPE: UFRPE: UPE, 2016. p. 132.Tipo: Resumo em Anais de Congresso |
Biblioteca(s): Embrapa Semiárido. |
|    |
Registros recuperados : 2 | |
|
Nenhum registro encontrado para a expressão de busca informada. |
|
|