|
|
 | Acesso ao texto completo restrito à biblioteca da Embrapa Agricultura Digital. Para informações adicionais entre em contato com cnptia.biblioteca@embrapa.br. |
Registro Completo |
Biblioteca(s): |
Embrapa Agricultura Digital. |
Data corrente: |
07/08/2013 |
Data da última atualização: |
04/02/2014 |
Tipo da produção científica: |
Artigo em Periódico Indexado |
Autoria: |
JOHANN, J. A.; ROCHA, J. V.; OLIVEIRA, S. R. de M.; RODRIGUES, L. H. A.; LAMPARELLI, R. A. C. |
Afiliação: |
JERRY A. JOHANN, Unioeste; JANSLE V. ROCHA, Feagri/Unicamp; STANLEY ROBSON DE MEDEIROS OLIVEIRA, CNPTIA; LUIZ H. A. RODRIGUES, Feagri/Unicamp; RUBENS A. C. LAMPARELLI, Feagri/Unicamp. |
Título: |
Data mining techniques for identification of spectrally homogeneous areas using NDVI temporal profiles of soybean crop. |
Ano de publicação: |
2013 |
Fonte/Imprenta: |
Engenharia Agrícola, Jaboticabal, v. 33, n. 3, p. 511-524, maio/jun. 2013. |
Idioma: |
Inglês |
Conteúdo: |
ABSTRACT: The aim of this study was to group temporal profiles of 10-day composites NDVI product by similarity, which was obtained by the SPOT Vegetation sensor, for municipalities with high soybean production in the state of Paraná, Brazil, in the 2005/2006 cropping season. Data mining is a valuable tool that allows extracting knowledge from a database, identifying valid, new, potentially useful and understandable patterns. Therefore, it was used the methods for clusters generation by means of the algorithms K-Means, MAXVER and DBSCAN, implemented in the WEKA software package. Clusters were created based on the average temporal profiles of NDVI of the 277 municipalities with high soybean production in the state and the best results were found with the K-Means algorithm, grouping the municipalities into six clusters, considering the period from the beginning of October until the end of March, which is equivalent to the crop vegetative cycle. Half of the generated clusters presented spectro-temporal pattern, a characteristic of soybeans and were mostly under the soybean belt in the state of Paraná, which shows good results that were obtained with the proposed methodology as for identification of homogeneous areas. These results will be useful for the creation of regional soybean "masks" to estimate the planted area for this crop. |
Palavras-Chave: |
Cultura da soja; Data mining; Mineração de textos; Perfil temporal de NDVI. |
Thesaurus Nal: |
Cluster analysis. |
Categoria do assunto: |
X Pesquisa, Tecnologia e Engenharia |
Marc: |
LEADER 02104naa a2200229 a 4500 001 1963489 005 2014-02-04 008 2013 bl uuuu u00u1 u #d 100 1 $aJOHANN, J. A. 245 $aData mining techniques for identification of spectrally homogeneous areas using NDVI temporal profiles of soybean crop.$h[electronic resource] 260 $c2013 520 $aABSTRACT: The aim of this study was to group temporal profiles of 10-day composites NDVI product by similarity, which was obtained by the SPOT Vegetation sensor, for municipalities with high soybean production in the state of Paraná, Brazil, in the 2005/2006 cropping season. Data mining is a valuable tool that allows extracting knowledge from a database, identifying valid, new, potentially useful and understandable patterns. Therefore, it was used the methods for clusters generation by means of the algorithms K-Means, MAXVER and DBSCAN, implemented in the WEKA software package. Clusters were created based on the average temporal profiles of NDVI of the 277 municipalities with high soybean production in the state and the best results were found with the K-Means algorithm, grouping the municipalities into six clusters, considering the period from the beginning of October until the end of March, which is equivalent to the crop vegetative cycle. Half of the generated clusters presented spectro-temporal pattern, a characteristic of soybeans and were mostly under the soybean belt in the state of Paraná, which shows good results that were obtained with the proposed methodology as for identification of homogeneous areas. These results will be useful for the creation of regional soybean "masks" to estimate the planted area for this crop. 650 $aCluster analysis 653 $aCultura da soja 653 $aData mining 653 $aMineração de textos 653 $aPerfil temporal de NDVI 700 1 $aROCHA, J. V. 700 1 $aOLIVEIRA, S. R. de M. 700 1 $aRODRIGUES, L. H. A. 700 1 $aLAMPARELLI, R. A. C. 773 $tEngenharia Agrícola, Jaboticabal$gv. 33, n. 3, p. 511-524, maio/jun. 2013.
Download
Esconder MarcMostrar Marc Completo |
Registro original: |
Embrapa Agricultura Digital (CNPTIA) |
|
Biblioteca |
ID |
Origem |
Tipo/Formato |
Classificação |
Cutter |
Registro |
Volume |
Status |
URL |
Voltar
|
|
Registros recuperados : 5 | |
2. |  | DESIMONE, E. R.; LARANJEIRA, F. F.; NERI, F. M.; CUNNIFFE, N. J.; GILLIGAN, C. A. A flexible stochastic model to test hypotheses concerning vector-transmissible citrus diseases. In: CONFERENCE INTERNATIONAL ORGANIZATION CITRUS VIROLOGISTS, 18., Campinas, SP, 2010. Proceedings... Campinas: IOCV, 2010. 1 CD-ROM. 035 PSO. Publicado também em: Citrus Research & Technology, Cordeirópolis, v. 31, Suplemento, 2010Tipo: Resumo em Anais de Congresso |
Biblioteca(s): Embrapa Mandioca e Fruticultura. |
|    |
3. |  | DESIMONE, E. R.; LARANJEIRA F. F.; NERI, F. M.; CUNNIFFE, N. J.; GILLIGAN, C. A. Modelling spread and control of Bahia Bark Scaling of Citrus. In: CONFERENCE INTERNATIONAL ORGANIZATION CITRUS VIROLOGISTS, 18., Campinas, SP, 2010. Proceedings... Campinas: IOCV, 2010. 1 CD-ROM. 049.PSO. Publicado também em: Citrus Research & Technology, Cordeirópolis, v. 31, Suplemento, 2010Tipo: Resumo em Anais de Congresso |
Biblioteca(s): Embrapa Mandioca e Fruticultura. |
|    |
5. |  | LARANJEIRA, F. F.; DESIMONE, E.; NERI, F. M.; CUNNIFFE, N.; FELIPE, J.; BASSANEZI, R. B.; GILLIGAN, C. Modelagem da estrutura e dinâmica de focos binários In: WORKSHOP DE EPIDEMIOLOGIA DE DOENÇAS DE PLANTAS, 3., 2010, Bento Gonçalves. Anais... Bento Gonçalves: Embrapa Uva e Vinho, 2010. 82 p. Editado por Ana Beatriz Costa Czermainski e Silvio André Meirelles Alves. p. 37-40.Tipo: Resumo em Anais de Congresso |
Biblioteca(s): Embrapa Mandioca e Fruticultura. |
|   |
Registros recuperados : 5 | |
|
Nenhum registro encontrado para a expressão de busca informada. |
|
|