|
|
 | Acesso ao texto completo restrito à biblioteca da Embrapa Instrumentação. Para informações adicionais entre em contato com cnpdia.biblioteca@embrapa.br. |
Registro Completo |
Biblioteca(s): |
Embrapa Instrumentação. |
Data corrente: |
11/07/2006 |
Data da última atualização: |
20/01/2015 |
Autoria: |
FERREIRA, Ednaldo José. |
Título: |
Abordagem genética para seleção de um conjunto reduzido de características para construção de ensembles de redes neurais : aplicação à língua eletrônica. |
Ano de publicação: |
2005 |
Fonte/Imprenta: |
São Carlos, 2005. Dissertação (Mestrado em Ciências de Computação e Matemática computacional) - ICMC. Universidade de São Paulo. Orientador: Prof. Dr. Alexandre Cláudio Botazzo Delbem. |
Páginas: |
117 f. |
Idioma: |
Português |
Conteúdo: |
As características irrelevantes, presentes em bases de dados de diversos domínios, deterioram a acurácia de predição de classificadores induzidos por algoritmos de aprendizado de máquina. As bases de dados geradas por uma língua eletrônica são exemplos típicos onde a demasiada quantidade de características irrelevantes e redundantes prejudicam a acurácia dos classificadores induzidos. Para lidar com este problema, duas abordagens podem ser utilizadas. A primeira é a utilização de métodos para seleção de subconjuntos de caracteristicas. A segunda abordagem é por meio de ensemble de classificadores. Um ensemble deve ser construído por classificadores diversos e acurados. Uma forma efetiva para construção de ensembles de classificadores é por meio de seleção de características. A seleção de características para ensemble tem objetivo adicional de encontrar subconjuntos de características que promovam acurácia e diversidade de predição nos classificadores do ensemble. Algoritmos genéticos são técnicas promissoras para seleção de características para ensemble. No entanto, a busca genética, assim com outras estratégias de busca geralmente visam somente a construção do ensemble, permitindo que todas as características (relevantes, irrelevantes e redundantes) sejam utilizadas. Este trabalho apresenta uma abordagem baseada em algoritmos genéticos para construção de ensembles de redes neurais artificiais com um conjunto reduzido das características totais. Para melhorar a acurácia dos ensembles, duas abordagens diferenciadas para treinamento de redes neurais foram utilizadas. A primeira baseada na interrupção precoce do treinamento com o algritmo back-propation e a segunda baseada em otimização multi-objetivo. Os resultados obtidos comprovam a eficácia do algoritmo proposto para construção de ensembles de redes neurais acurados. Também foi constatada sua eficiência na redução das características totais, comprovando que o algoritmo proposto é capaz de construir um ensemble utilizando um conjunto reduzido de características MenosAs características irrelevantes, presentes em bases de dados de diversos domínios, deterioram a acurácia de predição de classificadores induzidos por algoritmos de aprendizado de máquina. As bases de dados geradas por uma língua eletrônica são exemplos típicos onde a demasiada quantidade de características irrelevantes e redundantes prejudicam a acurácia dos classificadores induzidos. Para lidar com este problema, duas abordagens podem ser utilizadas. A primeira é a utilização de métodos para seleção de subconjuntos de caracteristicas. A segunda abordagem é por meio de ensemble de classificadores. Um ensemble deve ser construído por classificadores diversos e acurados. Uma forma efetiva para construção de ensembles de classificadores é por meio de seleção de características. A seleção de características para ensemble tem objetivo adicional de encontrar subconjuntos de características que promovam acurácia e diversidade de predição nos classificadores do ensemble. Algoritmos genéticos são técnicas promissoras para seleção de características para ensemble. No entanto, a busca genética, assim com outras estratégias de busca geralmente visam somente a construção do ensemble, permitindo que todas as características (relevantes, irrelevantes e redundantes) sejam utilizadas. Este trabalho apresenta uma abordagem baseada em algoritmos genéticos para construção de ensembles de redes neurais artificiais com um conjunto reduzido das características totais. Para melhorar a acurácia dos ... Mostrar Tudo |
Palavras-Chave: |
ALGORITMOS GENÉTICOS; REDES NEURAIS; SISTEMAS DISTRIBUÍDOS. |
Categoria do assunto: |
-- |
Marc: |
LEADER 02814nam a2200157 a 4500 001 1029857 005 2015-01-20 008 2005 bl uuuu m 00u1 u #d 100 1 $aFERREIRA, Ednaldo José 245 $aAbordagem genética para seleção de um conjunto reduzido de características para construção de ensembles de redes neurais$baplicação à língua eletrônica. 260 $aSão Carlos, 2005. Dissertação (Mestrado em Ciências de Computação e Matemática computacional) - ICMC. Universidade de São Paulo. Orientador: Prof. Dr. Alexandre Cláudio Botazzo Delbem.$c2005 300 $a117 f. 520 $aAs características irrelevantes, presentes em bases de dados de diversos domínios, deterioram a acurácia de predição de classificadores induzidos por algoritmos de aprendizado de máquina. As bases de dados geradas por uma língua eletrônica são exemplos típicos onde a demasiada quantidade de características irrelevantes e redundantes prejudicam a acurácia dos classificadores induzidos. Para lidar com este problema, duas abordagens podem ser utilizadas. A primeira é a utilização de métodos para seleção de subconjuntos de caracteristicas. A segunda abordagem é por meio de ensemble de classificadores. Um ensemble deve ser construído por classificadores diversos e acurados. Uma forma efetiva para construção de ensembles de classificadores é por meio de seleção de características. A seleção de características para ensemble tem objetivo adicional de encontrar subconjuntos de características que promovam acurácia e diversidade de predição nos classificadores do ensemble. Algoritmos genéticos são técnicas promissoras para seleção de características para ensemble. No entanto, a busca genética, assim com outras estratégias de busca geralmente visam somente a construção do ensemble, permitindo que todas as características (relevantes, irrelevantes e redundantes) sejam utilizadas. Este trabalho apresenta uma abordagem baseada em algoritmos genéticos para construção de ensembles de redes neurais artificiais com um conjunto reduzido das características totais. Para melhorar a acurácia dos ensembles, duas abordagens diferenciadas para treinamento de redes neurais foram utilizadas. A primeira baseada na interrupção precoce do treinamento com o algritmo back-propation e a segunda baseada em otimização multi-objetivo. Os resultados obtidos comprovam a eficácia do algoritmo proposto para construção de ensembles de redes neurais acurados. Também foi constatada sua eficiência na redução das características totais, comprovando que o algoritmo proposto é capaz de construir um ensemble utilizando um conjunto reduzido de características 653 $aALGORITMOS GENÉTICOS 653 $aREDES NEURAIS 653 $aSISTEMAS DISTRIBUÍDOS
Download
Esconder MarcMostrar Marc Completo |
Registro original: |
Embrapa Instrumentação (CNPDIA) |
|
Biblioteca |
ID |
Origem |
Tipo/Formato |
Classificação |
Cutter |
Registro |
Volume |
Status |
URL |
Voltar
|
|
Registros recuperados : 5 | |
3. |  | MORASI, I. M.; AMARO, A. R. F. V. B. de L.; DUARTE, R. C. R. M.; VILELA, V. A. A.; PACKER, A. P. Avaliação do manejo de nitrogênio no cafeeiro utilizando clorofilômetro. In: CONGRESSO BRASILEIRO DE PESQUISAS CAFEEIRAS, 41, 2015, Poços de Caldas. Com mais tecnologia, mas café se aprecia: trabalhos apresentados. Poços de Caldas: Fundação Procafé, 2015. 301-302Tipo: Resumo em Anais de Congresso |
Biblioteca(s): Embrapa Meio Ambiente. |
|    |
4. |  | ASSALIN, M. R.; SANTOS, L. D. L. dos; SOUZA, D. R. C. de; ROSA, M. A.; DUARTE, R. C. R. M.; CASTANHA, R. F.; DONAIRE, P. P. R.; DURAN, N. Nanoformulation as a tool for improvement of thiamethoxam encapsulation and evaluation of ecotoxicological impacts. Energy, Ecology and Environment, v. 4, n. 6. p. 310-317, 2019.Tipo: Nota Técnica/Nota Científica |
Biblioteca(s): Embrapa Meio Ambiente. |
|    |
5. |  | YASSITEPE, J. E. de C. T.; NONATO, J. V. A.; DUARTE, R. C. R. M.; PEREIRA, H. D.; ALMEIDA, V.; RIBEIRO, A. P.; FERNANDES, F. R.; GERHARDT, I. R.; DANTE, R. A.; ARRUDA, P. Phenotyping transgenic events for drought resistance. In: ANNUAL MAIZE GENETICS MEETING, 66., 2024, Raleigh. Program and abstracts. Beltsville: USDA, 2024. P46.Tipo: Resumo em Anais de Congresso |
Biblioteca(s): Embrapa Agricultura Digital. |
|    |
Registros recuperados : 5 | |
|
Nenhum registro encontrado para a expressão de busca informada. |
|
|