| |
|
|
 | Acesso ao texto completo restrito à biblioteca da Embrapa Meio Ambiente. Para informações adicionais entre em contato com cnpma.biblioteca@embrapa.br. |
|
Registro Completo |
|
Biblioteca(s): |
Embrapa Meio Ambiente. |
|
Data corrente: |
28/01/2025 |
|
Data da última atualização: |
28/01/2025 |
|
Tipo da produção científica: |
Artigo em Periódico Indexado |
|
Autoria: |
SANTOS, R. A. dos; MANTOVANI, E. C.; BUFON, V. B.; FERNANDES-FILHO, E. F. |
|
Afiliação: |
ROBSON ARGOLO DOS SANTOS, UNIVERSIDADE FEDERAL DE VIÇOSA; EVERARDO CHARTUNI MANTOVANI, UNIVERSIDADE FEDERAL DE VIÇOSA; VINICIUS BOF BUFON, CNPMA; ELPÍDIO INÁCIO FERNANDES FILHO, UNIVERSIDADE FEDERAL DE VIÇOSA. |
|
Título: |
Improving actual evapotranspiration estimates through an integrated remote sensing and cutting-edge machine learning approach. |
|
Ano de publicação: |
2024 |
|
Fonte/Imprenta: |
Computers and Electronics in Agriculture, v. 225, article 109258, 2024. |
|
ISSN: |
0168-1699 |
|
DOI: |
https://doi.org/10.1016/j.compag.2024.109258 |
|
Idioma: |
Inglês |
|
Conteúdo: |
Abstract: Recent technological advances have allowed the production of many studies on evapotranspiration, resulting in improvements in reference evapotranspiration estimates and crop coefficients with remote sensing data. However, these two areas of research often work independently, producing valuable studies, but without an effective integration to predict actual evapotranspiration directly, without the need for weather stations. Thus, this study aimed to model actual evapotranspiration in sugarcane crop using machine learning techniques, independently of weather stations and thermal sensor data. To achieve this goal, data from the OLI (Operational Land Imager) and TIRS (Thermal Infrared Sensor) sensors aboard the Landsat-8 and 9 satellites were used to produce the variable observed from the METRIC model, and data from the Sentinel-2A and 2B satellites, NASA POWER, WorldClim and astronomical variables, latitude, elevation, day of the year and month were used to generate the explanatory variables and feed 13 machine learning models for three different biomes: Atlantic Forest, Caatinga and Cerrado. The results indicated that the brnn (Bayesian regularized neural networks) model with R2 and RMSE of 0.73 and 1.10, respectively, and the XgbLinear (extreme gradient boosting – linear method) model, which obtained values of 0.74 and 1.25 for these metrics, in that order, showed the best overall performance. Specific analyses indicated that brnn was superior for cultivated areas in the Atlantic Forest and Caatinga biomes, while XgbLinear was superior in the Cerrado biome. These results show that machine learning algorithms are able to predict actual evapotranspiration without the need for using weather stations and thermal data. MenosAbstract: Recent technological advances have allowed the production of many studies on evapotranspiration, resulting in improvements in reference evapotranspiration estimates and crop coefficients with remote sensing data. However, these two areas of research often work independently, producing valuable studies, but without an effective integration to predict actual evapotranspiration directly, without the need for weather stations. Thus, this study aimed to model actual evapotranspiration in sugarcane crop using machine learning techniques, independently of weather stations and thermal sensor data. To achieve this goal, data from the OLI (Operational Land Imager) and TIRS (Thermal Infrared Sensor) sensors aboard the Landsat-8 and 9 satellites were used to produce the variable observed from the METRIC model, and data from the Sentinel-2A and 2B satellites, NASA POWER, WorldClim and astronomical variables, latitude, elevation, day of the year and month were used to generate the explanatory variables and feed 13 machine learning models for three different biomes: Atlantic Forest, Caatinga and Cerrado. The results indicated that the brnn (Bayesian regularized neural networks) model with R2 and RMSE of 0.73 and 1.10, respectively, and the XgbLinear (extreme gradient boosting – linear method) model, which obtained values of 0.74 and 1.25 for these metrics, in that order, showed the best overall performance. Specific analyses indicated that brnn was superior for cultivated areas i... Mostrar Tudo |
|
Thesagro: |
Cana de Açúcar; Evapotranspiração; Irrigação; Sensoriamento Remoto. |
|
Thesaurus Nal: |
Artificial intelligence; Environmental sustainability; Evapotranspiration; Prediction; Remote sensing; Sugarcane. |
|
Categoria do assunto: |
X Pesquisa, Tecnologia e Engenharia |
|
Marc: |
LEADER 02733naa a2200301 a 4500 001 2172026 005 2025-01-28 008 2024 bl uuuu u00u1 u #d 022 $a0168-1699 024 7 $ahttps://doi.org/10.1016/j.compag.2024.109258$2DOI 100 1 $aSANTOS, R. A. dos 245 $aImproving actual evapotranspiration estimates through an integrated remote sensing and cutting-edge machine learning approach.$h[electronic resource] 260 $c2024 520 $aAbstract: Recent technological advances have allowed the production of many studies on evapotranspiration, resulting in improvements in reference evapotranspiration estimates and crop coefficients with remote sensing data. However, these two areas of research often work independently, producing valuable studies, but without an effective integration to predict actual evapotranspiration directly, without the need for weather stations. Thus, this study aimed to model actual evapotranspiration in sugarcane crop using machine learning techniques, independently of weather stations and thermal sensor data. To achieve this goal, data from the OLI (Operational Land Imager) and TIRS (Thermal Infrared Sensor) sensors aboard the Landsat-8 and 9 satellites were used to produce the variable observed from the METRIC model, and data from the Sentinel-2A and 2B satellites, NASA POWER, WorldClim and astronomical variables, latitude, elevation, day of the year and month were used to generate the explanatory variables and feed 13 machine learning models for three different biomes: Atlantic Forest, Caatinga and Cerrado. The results indicated that the brnn (Bayesian regularized neural networks) model with R2 and RMSE of 0.73 and 1.10, respectively, and the XgbLinear (extreme gradient boosting – linear method) model, which obtained values of 0.74 and 1.25 for these metrics, in that order, showed the best overall performance. Specific analyses indicated that brnn was superior for cultivated areas in the Atlantic Forest and Caatinga biomes, while XgbLinear was superior in the Cerrado biome. These results show that machine learning algorithms are able to predict actual evapotranspiration without the need for using weather stations and thermal data. 650 $aArtificial intelligence 650 $aEnvironmental sustainability 650 $aEvapotranspiration 650 $aPrediction 650 $aRemote sensing 650 $aSugarcane 650 $aCana de Açúcar 650 $aEvapotranspiração 650 $aIrrigação 650 $aSensoriamento Remoto 700 1 $aMANTOVANI, E. C. 700 1 $aBUFON, V. B. 700 1 $aFERNANDES-FILHO, E. F. 773 $tComputers and Electronics in Agriculture$gv. 225, article 109258, 2024.
Download
Esconder MarcMostrar Marc Completo |
|
Registro original: |
Embrapa Meio Ambiente (CNPMA) |
|
|
Biblioteca |
ID |
Origem |
Tipo/Formato |
Classificação |
Cutter |
Registro |
Volume |
Status |
URL |
Voltar
|
|
|
| Registros recuperados : 10 | |
| 1. |  | ANJOS, E. C. T. dos; CAVALCANTE, U. M. T.; SANTOS, V. F. dos; MAIA, L. C. Produção de mudas de maracujazeiro-doce micorrizadas em solo desinfestado e adubado com fósforo. Pesquisa Agropecuária Brasileira, Brasília, DF, v. 40, n. 4, p. 345-351, abr. 2005 Título em inglês: Production of mycorrhized sweet passion fruit seedlings in disinfected and phosphorus fertilized soil.| Biblioteca(s): Embrapa Unidades Centrais. |
|    |
| 2. |  | CAVALCANTE, U. M. T.; MAIA, L. C.; MELO, A. M. M.; SANTOS, V. F. dos. Influência da densidade de fungos micorrízicos arbusculares na produção de mudas de maracujazeiro-amarelo. Pesquisa Agropecuária Brasileira, Brasília, DF, v. 37, n. 5, p. 643-651, maio. 2002 Título em inglês: Effect of spore density of arbuscular mycorrhizal fungi on production of yellow passion fruit seedlings.| Biblioteca(s): Embrapa Unidades Centrais. |
|    |
| 3. |  | COSTA, C. M. C.; MAIA, L. C.; CAVALCANTE, U. M. T.; NOGUEIRA, R. J. M. C. Influência de fungos micorrízicos arbusculares sobre o crescimento de dois genótipos de aceroleira (Malpighia emarginata D.C.). Pesquisa Agropecuária Brasileira, Brasília, DF, v. 36, n. 6, p. 893-901, jun. 2001 Título em inglês: Effect of arbuscular mycorrhizal fungi on growth of two genotypes of Malpighia emarginata D.C.| Biblioteca(s): Embrapa Unidades Centrais. |
|    |
| 4. |  | COSTA, C. M. C.; CAVALCANTE, U. M. T.; GOTO, B. T.; SANTOS, V. F. dos; MAIA, L. C. Fungos micorrízicos arbusculares e adubação fosfatada em mudas de mangabeira. Pesquisa Agropecuária Brasileira, Brasília, DF, v. 40, n. 3, p. 225-232, mar. 2005 Título em inglês: Arbuscular mycorrhizal fungi and phosphorus supply on seedlings of mangabeira.| Biblioteca(s): Embrapa Unidades Centrais. |
|    |
| 5. |  | ALVES, M. F.; BARROSO, P. A. V.; CIAMPI, A. Y.; HOFFMANN, L. V.; AZEVEDO, V. C. R.; CAVALCANTE, U. Diversity and genetic structure among subpopulations of Gossypium mustelinum (Malvaceae). Genetics and Molecular Research, v. 12, n. 1, p. 597-609, 2013.| Tipo: Artigo em Periódico Indexado | Circulação/Nível: A - 2 |
| Biblioteca(s): Embrapa Recursos Genéticos e Biotecnologia. |
|    |
| 6. |  | ESCOBAR, I. E. C.; SANTOS, V. M.; SILVA, D. K. A. da; FERNANDES, M. F.; CAVALCANTE, U. M. T.; MAIA, L. C. Changes in microbial community structure and soil biological properties in mined dune areas during re-vegetation. Environmental Management, Ney York, v. 55, n. 6, p. 1433-1445, jun. 2015.| Tipo: Artigo em Periódico Indexado | Circulação/Nível: A - 1 |
| Biblioteca(s): Embrapa Tabuleiros Costeiros. |
|    |
| 7. |  | GONÇALVES, D. M. C.; CAVALCANTE, U. M. T.; SILVA, F. S. B. da; MELO, A. M. Y.; SANTOS, V. F. dos; MAIA, L. C. Infectividade de inóculo de fungos micorrízicos arbusculares após estocagem. In: REUNIÃO NORDESTINA DE BOTÂNICA, 27., 2004, Petrolina. Anais... Petrolina: SBB; Embrapa Semi-Árido; UNEB, 2004. 1 CD-ROM.| Tipo: Resumo em Anais de Congresso |
| Biblioteca(s): Embrapa Semiárido. |
|    |
| 8. |  | BERTIOLI, S. C. de M. L.; CAVALCANTE, U.; GOUVEA, E. G.; BALLÉN-TABORDA, C.; SHIRASAWA, K.; GUIMARAES, P. M.; JACKSON, S. A.; BERTIOLI, D. J.; MORETZSOHN, M. de C. Identification of QTLs for rust resistance in the peanut wild species arachis magna and the development of KASP markers for marker-assisted selection. G3: Genes, Genomes e Genetics, v. 5, p. 1403-1413, 2015.| Tipo: Artigo em Periódico Indexado | Circulação/Nível: B - 1 |
| Biblioteca(s): Embrapa Recursos Genéticos e Biotecnologia. |
|    |
| 9. |  | GALHARDO, I. C.; BERTIOLI, D. J.; COSTANTIN, E. C.; SANTOS, S. P.; GUIMARAES, P. M.; MORETZSOHN, M. de C.; EULÁLIO, V. C. S.; CAVALCANTE, U.; BERTIOLI, S. C. de M. L. Introgression of resistances for rust and late leaf spot in peanut from wild species using the tetraploid route through backcross. In: INTERNATIONAL CONFERENCE OF THE PEANUT RESEARCH COMMUNITY ON ADVANCES IN ARACHIS THROUGH GENOMICS AND BIOTECNOLOGY, 5., 2011, Brasília, DF. Book of abstracts... Brasília, DF: Embrapa Genetic Researces and Biotecnology, 2011. p. 95| Tipo: Resumo em Anais de Congresso |
| Biblioteca(s): Embrapa Recursos Genéticos e Biotecnologia. |
|   |
| 10. |  | BERTIOLI, S. C. de M. L.; SANTOS, S. P.; DANTAS, K. M.; INGLIS, P. W.; NIELEN, S.; ARAUJO, A. C. G.; SILVA, J. P.; CAVALCANTE, U.; GUIMARAES, P. M.; BRASILEIRO, A. C. M.; CARRASQUILLA-GARCIA, N.; PENMETSA, R. V.; COOK, D.; MORETZSOHN, M. C.; BERTIOLI, D. J. Arachis batizocoi: a study of its relationship to cultivated peanut (A. hypogaea) and its potential for introgression of wild genes into the peanut crop using induced allotetraploids. Annals of Botany, v. 115, p. 237-249, 2015.| Tipo: Artigo em Periódico Indexado | Circulação/Nível: A - 1 |
| Biblioteca(s): Embrapa Recursos Genéticos e Biotecnologia. |
|    |
| Registros recuperados : 10 | |
|
| Nenhum registro encontrado para a expressão de busca informada. |
|
|