|   | 
				
				
				
				
		        
	            
				
					
					
						
							| 
								
							 | 
							
							  | Acesso ao texto completo restrito à biblioteca da Embrapa Arroz e Feijão. Para informações adicionais entre em contato com cnpaf.biblioteca@embrapa.br. |   
| 
Registro Completo |  
| 
Biblioteca(s):  | 
Embrapa Arroz e Feijão. | 
 
| 
Data corrente:  | 
17/06/2024 | 
 
| 
Data da última atualização:  | 
18/06/2024 | 
 
| 
Tipo da produção científica:  | 
Artigo em Periódico Indexado | 
 
| 
Autoria:  | 
HEINEMANN, A. B.; COSTA-NETO, G.; MATTA, D. H. da; FERNANDES, I. K.; STONE, L. F. | 
 
| 
Afiliação:  | 
ALEXANDRE BRYAN HEINEMANN, CNPAF; GERMANO COSTA-NETO, CORNELL UNIVERSITY; DAVID HENRIQUES DA MATTA, UNIVERSIDADE FEDERAL DE GOIÁS; IGOR KUIVJOGI FERNANDES, UNIVERSIDADE FEDERAL DE GOIÁS; LUIS FERNANDO STONE, CNPAF. | 
 
| 
Título:  | 
Harnessing crop models and machine learning for a spatial-temporal characterization of irrigated rice breeding environments in Brazil. | 
 
| 
Ano de publicação:  | 
2024 | 
 
| 
Fonte/Imprenta:  | 
Field Crops Research, v. 315, 109452, July 2024. | 
 
| 
ISSN:  | 
0378-4290 | 
 
| 
DOI:  | 
https://doi.org/10.1016/j.fcr.2024.109452 | 
 
| 
Idioma:  | 
Inglês | 
 
| 
Conteúdo:  | 
Problem: Tropical ecosystems are essential for irrigated rice production and are vital for ensuring food security in countries like Brazil. However, the uncertainty stemming from numerous environmental constraints limits current productivity levels and presents challenges for plant breeding research in developing productive and stable cultivars. Objective: To overcome these challenges, environmental characterization is essential to support breeding decision-making and help design and develop superior cultivars capable of capitalizing on genotype x environment interactions (GxE). Methods: In this study, we characterize the tropical rice zone in Brazil using crop modeling outcomes, machine learning tools (unsupervised clustering and supervised classification), envirotyping, and long-term observed yield trials from the irrigated rice-breeding program. Results: Three target population of environments (TPE) were detected across diverse geographic regions and planting dates, named after LFE (Least Favorable Environments, 44 % of occurrence), FE (Favorable Environments, 33 %), and HFE (Highly Favorable Environments, 23 %). For each TPE, we identified the key climate drivers for achieving higher yields, which involved a combination of lower temperatures (average maximum and minimum temperature: 30 ◦C and 19 ◦C), while higher radiation in vegetative and reproductive phases (692 and 723 MJ m 2) and precipitation (663 mm). The inclusion of TPE information to support the GXE analysis spanning 18 years of advanced yield trials for cultivar targeting increased the model’s heritability, even reducing the number of trials by 40 %. Conclusions: Environmental characterization pipelines in tropical rice could be leveraged by combining crop models and machine learning. Virtual simulations of historical climate trends across locations and planting dates could extend the spectrum of growing conditions screened to compose target population of environments for breeding. This is vital to support the design of new breeding programs, exploring alternative planting dates, or when breeders want to characterize a new growing region without any prior field trial data. For an extensive region, this helps breeders either improve cultivar testing analysis or identify the most prone locations to optimize seed production at commercial phases. MenosProblem: Tropical ecosystems are essential for irrigated rice production and are vital for ensuring food security in countries like Brazil. However, the uncertainty stemming from numerous environmental constraints limits current productivity levels and presents challenges for plant breeding research in developing productive and stable cultivars. Objective: To overcome these challenges, environmental characterization is essential to support breeding decision-making and help design and develop superior cultivars capable of capitalizing on genotype x environment interactions (GxE). Methods: In this study, we characterize the tropical rice zone in Brazil using crop modeling outcomes, machine learning tools (unsupervised clustering and supervised classification), envirotyping, and long-term observed yield trials from the irrigated rice-breeding program. Results: Three target population of environments (TPE) were detected across diverse geographic regions and planting dates, named after LFE (Least Favorable Environments, 44 % of occurrence), FE (Favorable Environments, 33 %), and HFE (Highly Favorable Environments, 23 %). For each TPE, we identified the key climate drivers for achieving higher yields, which involved a combination of lower temperatures (average maximum and minimum temperature: 30 ◦C and 19 ◦C), while higher radiation in vegetative and reproductive phases (692 and 723 MJ m 2) and precipitation (663 mm). The inclusion of TPE information to support the GXE analysis sp... Mostrar Tudo | 
 
| 
Thesagro:  | 
Arroz Irrigado; Clima; Interação Genética; Melhoramento Genético Vegetal. | 
 
| 
Thesaurus Nal:  | 
Climate; Crop models; Environmental factors; Genotype-environment interaction; Plant breeding. | 
 
| 
Categoria do assunto:  | 
X Pesquisa, Tecnologia e Engenharia | 
 
| 
Marc:  | 
LEADER 03308naa a2200301 a 4500 001 2164897 005 2024-06-18 008        2024    bl uuuu     u00u1 u    #d 022   $a0378-4290 024 7 $ahttps://doi.org/10.1016/j.fcr.2024.109452$2DOI 100 1 $aHEINEMANN, A. B. 245   $aHarnessing crop models and machine learning for a spatial-temporal characterization of irrigated rice breeding environments in Brazil.$h[electronic resource] 260   $c2024 520   $aProblem: Tropical ecosystems are essential for irrigated rice production and are vital for ensuring food security in countries like Brazil. However, the uncertainty stemming from numerous environmental constraints limits current productivity levels and presents challenges for plant breeding research in developing productive and stable cultivars. Objective: To overcome these challenges, environmental characterization is essential to support breeding decision-making and help design and develop superior cultivars capable of capitalizing on genotype x environment interactions (GxE). Methods: In this study, we characterize the tropical rice zone in Brazil using crop modeling outcomes, machine learning tools (unsupervised clustering and supervised classification), envirotyping, and long-term observed yield trials from the irrigated rice-breeding program. Results: Three target population of environments (TPE) were detected across diverse geographic regions and planting dates, named after LFE (Least Favorable Environments, 44 % of occurrence), FE (Favorable Environments, 33 %), and HFE (Highly Favorable Environments, 23 %). For each TPE, we identified the key climate drivers for achieving higher yields, which involved a combination of lower temperatures (average maximum and minimum temperature: 30 ◦C and 19 ◦C), while higher radiation in vegetative and reproductive phases (692 and 723 MJ m 2) and precipitation (663 mm). The inclusion of TPE information to support the GXE analysis spanning 18 years of advanced yield trials for cultivar targeting increased the model’s heritability, even reducing the number of trials by 40 %. Conclusions: Environmental characterization pipelines in tropical rice could be leveraged by combining crop models and machine learning. Virtual simulations of historical climate trends across locations and planting dates could extend the spectrum of growing conditions screened to compose target population of environments for breeding. This is vital to support the design of new breeding programs, exploring alternative planting dates, or when breeders want to characterize a new growing region without any prior field trial data. For an extensive region, this helps breeders either improve cultivar testing analysis or identify the most prone locations to optimize seed production at commercial phases. 650   $aClimate 650   $aCrop models 650   $aEnvironmental factors 650   $aGenotype-environment interaction 650   $aPlant breeding 650   $aArroz Irrigado 650   $aClima 650   $aInteração Genética 650   $aMelhoramento Genético Vegetal 700 1 $aCOSTA-NETO, G. 700 1 $aMATTA, D. H. da 700 1 $aFERNANDES, I. K. 700 1 $aSTONE, L. F. 773   $tField Crops Research$gv. 315, 109452, July 2024.
  Download
  Esconder MarcMostrar Marc Completo | 
 
| 
Registro original:  | 
Embrapa Arroz e Feijão (CNPAF) | 
 
 
 | 
 
 
| 
Biblioteca | 
ID | 
Origem | 
Tipo/Formato | 
Classificação | 
Cutter | 
Registro | 
Volume | 
Status | 
URL | 
 
 
									
									Voltar
									
									
							 | 
						 
					 					
									
				 
				
					
					
						
							| 
								
							 | 
							
							
| Registros recuperados : 99 |  |   
| 1. |   | HAVERROTH, M. Agricultura indígena e princípios agroflorestais. In: SILVA, V. A. da; ALMEIDA, A. L. S. de; ALBUQUERQUE, U. P. de. (org.). Etnobiologia e etnoecologia: pessoas & natureza na América Latina. Recife: Nuppea, 2010. cap. 13, p. 307-319.| Tipo: Capítulo em Livro Técnico-Científico |  
 | Biblioteca(s): Embrapa Acre. |  
  |    |  
 
| 4. |   | HAVERROTH, M. Etnobiologia e pesquisa na Amazônia. In: ENCONTRO DE ETNOCIÊNCIA E PESQUISA AGROPECUÁRIA E FLORESTAL DA AMAZÔNIA, 2007, Rio Branco, AC. [Anais...]. Rio Branco, AC: Embrapa Acre, 2008. 15 p. 1 CD-ROM.| Tipo: Artigo em Anais de Congresso |  
 | Biblioteca(s): Embrapa Acre. |  
  |     |  
 
| 7. |   | HAVERROTH, M. Etnoconhecimento e agrobiodiversidade entre os Kaxinawá da terra indígena Nova Olinda, Feijó, Acre. In: DIAS, T.; EIDT, J. S.; UDRY, C. (ed.). Diálogos de saberes: relatos da Embrapa. Brasília, DF: Embrapa, 2016. pt. 1, cap. 13, p. 216-233. (Coleção povos e comunidades tradicionais, v. 2).| Tipo: Capítulo em Livro Técnico-Científico |  
 | Biblioteca(s): Embrapa Acre. |  
  |     |  
 
| 8. |   | HAVERROTH, M. Falando em farinha... In: SOUZA, J. M. L. de; ÁLVARES, V. de S.; NÓBREGA, M. de S. (ed.). Indicação geográfica da farinha de mandioca de Cruzeiro do Sul, Acre. Rio Branco, AC: Embrapa Acre, 2017. cap. 6, p. 99-118.| Tipo: Capítulo em Livro Técnico-Científico |  
 | Biblioteca(s): Embrapa Acre. |  
  |     |  
 
| 14. |   | HAVERROTH, M. Diálogo de saberes na terra indígena Kaxinawá de Nova Olinda e sua aplicação para a conservação ambiental, fortalecimento cultural, produção e extrativismo, município de Feijó, Acre, Brasil. In: ARAÚJO, W. S.; HAVERROTH, M.; WRIGHT, R. M. (org.). Cosmologias, meio ambiente e mudanças climáticas. São Paulo: Dialética, 2023. p. 297-325.| Tipo: Capítulo em Livro Técnico-Científico |  
 | Biblioteca(s): Embrapa Alimentos e Territórios. |  
  |     |  
 
| 19. |   | HAVERROTH, M. Pesquisa é coisa de peixe. In: DUQUE-BRASIL, R.; SOLDATI, G. T.; SOUTO, F. J. B.; ALENCAR, N. L.; MING, L. C.; COELHO, F. M. G. (org.). Quando pensa que não...: contos, causos e crônicas em etnoecologia. Viçosa, MG: Edição dos Organizadores, 2012. p. 213-219.| Tipo: Capítulo em Livro Técnico-Científico |  
 | Biblioteca(s): Embrapa Acre. |  
  |     |  
 
| 20. |   | SIVIERO, A.; HAVERROTH, M. Agrobiodiversidade de fruteiras da terra indígena Kaxinawa de Nova Olinda, Feijó, Acre, Brasil. In: CONGRESSO BRASILEIRO DE SISTEMAS AGROFLORESTAIS, 10., 2016, Cuiabá. SAF: aprendizados, desafios e perspectivas: anais. Cuiabá: SBSAF, 2016. 3 p.| Tipo: Artigo em Anais de Congresso |  
 | Biblioteca(s): Embrapa Acre. |  
  |     |  
 
| Registros recuperados : 99 |  |   
							 | 
						 
					 
												
				 
				
					
					| Nenhum registro encontrado para a expressão de busca informada. |   
												
				 
		         
				 | 
				  |