| |
|
|
 | Acesso ao texto completo restrito à biblioteca da Embrapa Instrumentação. Para informações adicionais entre em contato com cnpdia.biblioteca@embrapa.br. |
|
Registro Completo |
|
Biblioteca(s): |
Embrapa Instrumentação. |
|
Data corrente: |
15/01/2024 |
|
Data da última atualização: |
05/09/2025 |
|
Tipo da produção científica: |
Artigo em Periódico Indexado |
|
Autoria: |
ALVES, G. M.; CRUVINEL, P. E. |
|
Afiliação: |
FEDERAL UNIVERSITY OF SÃO CARLOS (UFSCAR); PAULO ESTEVAO CRUVINEL, CNPDIA. |
|
Título: |
Parallel and distributed processing for high resolution agricultural tomography based on big data. |
|
Ano de publicação: |
2024 |
|
Fonte/Imprenta: |
Multimedia Tools and Applications, v. 83, 2024. |
|
Páginas: |
10115–10146 |
|
DOI: |
https://doi.org/10.1007/s11042-023-15686-2 |
|
Idioma: |
Inglês |
|
Conteúdo: |
In the field of high-resolution tomography, there is currently a notable increase in the volume of tomographic projections and data produced. Such a context has been demanding new computational approaches to the process of reconstruction and processing of the resulting digital images. This paper presents a new approach to meet such a demand, such as optimizing the set of tomographic projections for the reconstruction process, parallelizing algorithm reconstruction, and processing the data in a distributed manner. In this context, a customized method for the high-resolution tomographic reconstruction of agricultural samples has been validated. Hence, tomographic projections with greater amounts of information based on measurements of the spectral density of the projections can be prioritized, and the reconstructive process parallelization using the known filtered back-projection can be considered (i.e., distributed data flow and the use of the Apache Spark environment). For the operation, such an approach based on the big data environment has been organized, that is considering a cluster installed on the Amazon Web Services platform, whose configuration has been defined after the evaluation of the speedup and efficiency metrics. The developed method proved to be useful for carrying out high-resolution tomography analyses of large quantities of agricultural samples, based on the paradigms of precision agriculture for gains in sustainability and competitiveness of the production process. MenosIn the field of high-resolution tomography, there is currently a notable increase in the volume of tomographic projections and data produced. Such a context has been demanding new computational approaches to the process of reconstruction and processing of the resulting digital images. This paper presents a new approach to meet such a demand, such as optimizing the set of tomographic projections for the reconstruction process, parallelizing algorithm reconstruction, and processing the data in a distributed manner. In this context, a customized method for the high-resolution tomographic reconstruction of agricultural samples has been validated. Hence, tomographic projections with greater amounts of information based on measurements of the spectral density of the projections can be prioritized, and the reconstructive process parallelization using the known filtered back-projection can be considered (i.e., distributed data flow and the use of the Apache Spark environment). For the operation, such an approach based on the big data environment has been organized, that is considering a cluster installed on the Amazon Web Services platform, whose configuration has been defined after the evaluation of the speedup and efficiency metrics. The developed method proved to be useful for carrying out high-resolution tomography analyses of large quantities of agricultural samples, based on the paradigms of precision agriculture for gains in sustainability and competitiveness of the productio... Mostrar Tudo |
|
Palavras-Chave: |
Big data; Image processing; Tomographic image reconstruction; Tomographic selection projections. |
|
Thesaurus Nal: |
Precision agriculture. |
|
Categoria do assunto: |
-- |
|
Marc: |
LEADER 02221naa a2200217 a 4500 001 2160861 005 2025-09-05 008 2024 bl uuuu u00u1 u #d 024 7 $ahttps://doi.org/10.1007/s11042-023-15686-2$2DOI 100 1 $aALVES, G. M. 245 $aParallel and distributed processing for high resolution agricultural tomography based on big data.$h[electronic resource] 260 $c2024 300 $a10115–10146 520 $aIn the field of high-resolution tomography, there is currently a notable increase in the volume of tomographic projections and data produced. Such a context has been demanding new computational approaches to the process of reconstruction and processing of the resulting digital images. This paper presents a new approach to meet such a demand, such as optimizing the set of tomographic projections for the reconstruction process, parallelizing algorithm reconstruction, and processing the data in a distributed manner. In this context, a customized method for the high-resolution tomographic reconstruction of agricultural samples has been validated. Hence, tomographic projections with greater amounts of information based on measurements of the spectral density of the projections can be prioritized, and the reconstructive process parallelization using the known filtered back-projection can be considered (i.e., distributed data flow and the use of the Apache Spark environment). For the operation, such an approach based on the big data environment has been organized, that is considering a cluster installed on the Amazon Web Services platform, whose configuration has been defined after the evaluation of the speedup and efficiency metrics. The developed method proved to be useful for carrying out high-resolution tomography analyses of large quantities of agricultural samples, based on the paradigms of precision agriculture for gains in sustainability and competitiveness of the production process. 650 $aPrecision agriculture 653 $aBig data 653 $aImage processing 653 $aTomographic image reconstruction 653 $aTomographic selection projections 700 1 $aCRUVINEL, P. E. 773 $tMultimedia Tools and Applications$gv. 83, 2024.
Download
Esconder MarcMostrar Marc Completo |
|
Registro original: |
Embrapa Instrumentação (CNPDIA) |
|
|
Biblioteca |
ID |
Origem |
Tipo/Formato |
Classificação |
Cutter |
Registro |
Volume |
Status |
URL |
Voltar
|
|
|
| Registros recuperados : 2 | |
| 1. |  | FONSECA-BOITEUX, M. E. de N.; PINÕN, M.; RODRIGUEZ, Y.; GONZÁLEZ-ARCOS, M.; ARRUABARRENA, A.; BOITEUX, L. S. Allelic diversity for a genomic segment encompassing a functional marker associated with the Sw-5 locus in wild tomato species and tomato breeding lines. In: SOLANACEAE CONFERENCE, 11., 2014, Arraial D'Ajuda. Book of abstracts. [s.l]: [s. n.], 2014. p. 162 Resumo.| Tipo: Resumo em Anais de Congresso |
| Biblioteca(s): Embrapa Hortaliças. |
|   |
| 2. |  | DIANESE, E. C.; FONSECA-BOITEUX, M. E. de N.; PIÑON, M.; COSTA, A. F.; RESENDE, R. O.; BOITEUX, L. S. Application of a functional marker derived form the Sw-5 gene in accessions form tomato breeding programs conducted in the Americas, Europe, and Middle-East. Tropical Plant Pathology, Brasília, DF, v. 35, p. S211, ago. 2010. Suplemento. Resumo 07-049. Trabalho apresentado no 43. Congresso Brasileiro de Fitopatologia, 2010, Cuiabá.| Tipo: Resumo em Anais de Congresso |
| Biblioteca(s): Embrapa Hortaliças. |
|   |
| Registros recuperados : 2 | |
|
| Expressão de busca inválida. Verifique!!! |
|
|