|
|
 | Acesso ao texto completo restrito à biblioteca da Embrapa Instrumentação. Para informações adicionais entre em contato com cnpdia.biblioteca@embrapa.br. |
Registro Completo |
Biblioteca(s): |
Embrapa Instrumentação. |
Data corrente: |
12/07/2023 |
Data da última atualização: |
27/11/2024 |
Tipo da produção científica: |
Artigo em Periódico Indexado |
Autoria: |
OLIVEIRA FILHO, J. G.; SOUSA, T. L. de; BERTOLO, M. R. V.; BORGUSZ JUNIOR, S.; MATTOSO, L. H. C.; PIMENTEL, T. C.; EGEA, M. B. |
Afiliação: |
JOSEMAR GONÇALVES DE OLIVEIRA FILHO, UNIVERSIDADE ESTADUAL PAULISTA (UNESP); TAINARA LEAL DE SOUSA, GOIAS FEDERAL UNIVERSITY (UFG); MIRELLA ROMANELLI VICENTE BERTOLO, UNIVERSITY OF S ̃AO PAULO (USP); STANISLAU BOGUSZ JUNIOR, UNIVERSITY OF SAO PAULO (USP); LUIZ HENRIQUE CAPPARELLI MATTOSO, CNPDIA; TATIANA COLOMBO PIMENTEL, FEDERAL INSTITUTE OF PARANA; MARIANA BURANELO EGEA, GOIANO FEDERAL INSTITUTE OF EDUCATION. |
Título: |
Next-generation food packaging: Edible bioactive films with alginate, mangaba pulp (Hancornia speciosa), and Saccharomyces boulardii. |
Ano de publicação: |
2023 |
Fonte/Imprenta: |
Food Bioscience, v. 54, 102799, 2023. |
Páginas: |
1 - 10 |
ISSN: |
2212-4292 |
DOI: |
https://doi.org/10.1016/j.fbio.2023.102799 |
Idioma: |
Inglês |
Conteúdo: |
In recent years, there has been increasing interest in edible films made from biopolymers for food packaging due to their biodegradable, non-toxic, and biocompatible properties. In addition to presenting barrier properties, these films can also carry bioactive compounds such as probiotics, prebiotics, and fruit pulps, which benefit consumers’ health. In this context, this research aimed to develop bioactive edible films based on alginate with the addition of mangaba pulp (Hancornia speciosa) and the probiotic yeast Saccharomyces boulardii for application as food packaging material. The films were prepared based on alginate (1.5%), glycerol (0.6 g/g of biopolymer), mangaba pulp (0%–40%), and S. boulardii (9 log CFU/g). The relationship in their properties related to water, physical-mechanical, optical, and thermal was evaluated. Furthermore, the concentration of bioactive compounds, antioxidant activity, and probiotic viability (during storage at 4 and 25 ◦C) were determined. The addition of S. boulardii reduced the tensile strength, increased the C* and opacity values of the films, and improved barrier properties to ultraviolet and visible light. Adding mangaba pulp improved the films’ waterrelated, tensile, and thermal properties, as the films showed lower water solubility and water vapor permeability and higher thermal stability, tensile strength, and elongation at break. Increasing the concentration of mangaba pulp in the filmogenic solution made the films darker, with yellow tones and more saturated. Furthermore, it incorporated bioactive compounds (carotenoids, vitamin C, and phenolic compounds), increased the antioxidant capacity of the films and improved barrier properties to ultraviolet and visible light. Probiotic cultures could survive at suitable counts (>6 log CFU/g) during film formation and storage (4 ◦C/45 days or 25 ◦C/21 days). Thus, these films represent new bioactive carriers with potential applications as food packaging materials. MenosIn recent years, there has been increasing interest in edible films made from biopolymers for food packaging due to their biodegradable, non-toxic, and biocompatible properties. In addition to presenting barrier properties, these films can also carry bioactive compounds such as probiotics, prebiotics, and fruit pulps, which benefit consumers’ health. In this context, this research aimed to develop bioactive edible films based on alginate with the addition of mangaba pulp (Hancornia speciosa) and the probiotic yeast Saccharomyces boulardii for application as food packaging material. The films were prepared based on alginate (1.5%), glycerol (0.6 g/g of biopolymer), mangaba pulp (0%–40%), and S. boulardii (9 log CFU/g). The relationship in their properties related to water, physical-mechanical, optical, and thermal was evaluated. Furthermore, the concentration of bioactive compounds, antioxidant activity, and probiotic viability (during storage at 4 and 25 ◦C) were determined. The addition of S. boulardii reduced the tensile strength, increased the C* and opacity values of the films, and improved barrier properties to ultraviolet and visible light. Adding mangaba pulp improved the films’ waterrelated, tensile, and thermal properties, as the films showed lower water solubility and water vapor permeability and higher thermal stability, tensile strength, and elongation at break. Increasing the concentration of mangaba pulp in the filmogenic solution made the films darker, with ye... Mostrar Tudo |
Palavras-Chave: |
Bioactive films; Cerrado biome; Probiotic yeast. |
Categoria do assunto: |
-- |
Marc: |
null Download
Esconder MarcMostrar Marc Completo |
Registro original: |
Embrapa Instrumentação (CNPDIA) |
|
Biblioteca |
ID |
Origem |
Tipo/Formato |
Classificação |
Cutter |
Registro |
Volume |
Status |
URL |
Voltar
|
|
Registros recuperados : 110 | |
12. |  | SOARES, J. J.; ARRIEL, N. H. C. Pragas. In: ARRIEL, N. H. C.; BELTRAO, N. E. de M.; FIRMINO, P. de T. (Ed.). Gergelim: o produtor pergunta, a Embrapa responde. Brasília, DF: Embrapa Informação Tecnológica: Campina Grande: Embrapa Algodão, 2009. p. 125-136Tipo: Capítulo em Livro Técnico-Científico |
Biblioteca(s): Embrapa Algodão. |
|   |
Registros recuperados : 110 | |
|
Nenhum registro encontrado para a expressão de busca informada. |
|
|