| |
|
|
 | Acesso ao texto completo restrito à biblioteca da Embrapa Recursos Genéticos e Biotecnologia. Para informações adicionais entre em contato com cenargen.biblioteca@embrapa.br. |
|
Registro Completo |
|
Biblioteca(s): |
Embrapa Instrumentação; Embrapa Recursos Genéticos e Biotecnologia. |
|
Data corrente: |
10/09/2021 |
|
Data da última atualização: |
03/10/2023 |
|
Tipo da produção científica: |
Artigo em Periódico Indexado |
|
Autoria: |
RAMOS, A. P. M.; GOMES, F. D. G.; PINHEIRO, M. M. F.; FURUYA, D. E. G.; GONÇALVEZ, W. N.; MARCATO JUNIOR, J.; MICHEREFF, M. F. F.; MORAES, M. C. B.; BORGES, M.; LAUMANN, R. A.; LIESENBERG, V.; JORGE, L. A. de C.; OSCO, L. P. |
|
Afiliação: |
ANA PAULA MARQUES RAMOS, UNOESTE; FELIPE DAVID GEORGES GOMES, UNOESTE; MAYARA MAEZANO FAITA PINHEIRO, UNOESTE; DANIELLE ELIS GARCIA FURUYA, UNOESTE; WESLEY NUNES GONÇALVEZ, UFMS; JOSÉ MARCATO JUNIOR, UFMS; MIRIAN FERNANDES FURTADO MICHEREFF; MARIA CAROLINA BLASSIOLI MORAES, Cenargen; MIGUEL BORGES, Cenargen; RAUL ALBERTO LAUMANN, Cenargen; VERALDO LIESENBERG, Udesc; LUCIO ANDRE DE CASTRO JORGE, CNPDIA; LUCAS PRADO OSCO, UNOESTE. |
|
Título: |
Detecting the attack of the fall armyworm (Spodoptera frugiperda) in cotton plants with machine learning and spectral measurements. |
|
Ano de publicação: |
2021 |
|
Fonte/Imprenta: |
Precision Agriculture, 2021. |
|
DOI: |
https://doi.org/10.1007/s11119-021-09845-4 |
|
Idioma: |
Inglês |
|
Notas: |
Na publicação: Maria Carolina Blassioli-Moraes; Raúl Alberto Alaumann. |
|
Conteúdo: |
ABSTRACT: The Spodoptera frugiperda (i.e., fall armyworm) causes irreversible damage in cotton cultivars, and its visual inspection on plants is a burdensome task for humans. A recent strategy to automatically do similar tasks is processing hyperspectral reflectance measurements with machine learning algorithms. Herein, its proposed a framework for modeling the spectral response of cotton plants under the fall armyworm attacks using machine learning algorithms, culminating in a theoretical model creation based on the band simulation process. A controlled experiment was conducted to collect hyperspectral radiance measurements from health and damage cotton plants over eight days. A hand-held spectroradiometer operating from 350 to 2500 nm was used. Several algorithms were evaluated, and a ranking approach was adopted to identify the most contributive wavelengths for detecting the damage. The Self-Organizing Map method was applied to organize the spectral wavelengths into groups, favoring the theoretical model creation for two sensors: OLI (Landsat-8) and MSI (Sentinel-2). It was found that the Random Forest algorithm produced the most suitable model, and the last day of analysis was better to separate healthy and damaged plants (F-measure: 0.912). The best spectral regions range from the red to near-infrared (650 to 1350 nm) and the shortwave infrared (1570 to 1640 nm). The theoretical model returned accurate results using both sensors (OLI, F-Measure?=?0.865, and MSI, F-Measure?=?0.886). In conclusion, the proposed framework contributes to accurately identifying cotton plants under the Spodoptera frugiperda attack for both hyperspectral and multispectral scales. MenosABSTRACT: The Spodoptera frugiperda (i.e., fall armyworm) causes irreversible damage in cotton cultivars, and its visual inspection on plants is a burdensome task for humans. A recent strategy to automatically do similar tasks is processing hyperspectral reflectance measurements with machine learning algorithms. Herein, its proposed a framework for modeling the spectral response of cotton plants under the fall armyworm attacks using machine learning algorithms, culminating in a theoretical model creation based on the band simulation process. A controlled experiment was conducted to collect hyperspectral radiance measurements from health and damage cotton plants over eight days. A hand-held spectroradiometer operating from 350 to 2500 nm was used. Several algorithms were evaluated, and a ranking approach was adopted to identify the most contributive wavelengths for detecting the damage. The Self-Organizing Map method was applied to organize the spectral wavelengths into groups, favoring the theoretical model creation for two sensors: OLI (Landsat-8) and MSI (Sentinel-2). It was found that the Random Forest algorithm produced the most suitable model, and the last day of analysis was better to separate healthy and damaged plants (F-measure: 0.912). The best spectral regions range from the red to near-infrared (650 to 1350 nm) and the shortwave infrared (1570 to 1640 nm). The theoretical model returned accurate results using both sensors (OLI, F-Measure?=?0.865, and MSI, F-Measu... Mostrar Tudo |
|
Palavras-Chave: |
Insect damage; Machine learning; Spectral data; Theoretical model. |
|
Categoria do assunto: |
-- |
|
Marc: |
LEADER 02768naa a2200337 a 4500 001 2138144 005 2023-10-03 008 2021 bl uuuu u00u1 u #d 024 7 $ahttps://doi.org/10.1007/s11119-021-09845-4$2DOI 100 1 $aRAMOS, A. P. M. 245 $aDetecting the attack of the fall armyworm (Spodoptera frugiperda) in cotton plants with machine learning and spectral measurements.$h[electronic resource] 260 $c2021 500 $aNa publicação: Maria Carolina Blassioli-Moraes; Raúl Alberto Alaumann. 520 $aABSTRACT: The Spodoptera frugiperda (i.e., fall armyworm) causes irreversible damage in cotton cultivars, and its visual inspection on plants is a burdensome task for humans. A recent strategy to automatically do similar tasks is processing hyperspectral reflectance measurements with machine learning algorithms. Herein, its proposed a framework for modeling the spectral response of cotton plants under the fall armyworm attacks using machine learning algorithms, culminating in a theoretical model creation based on the band simulation process. A controlled experiment was conducted to collect hyperspectral radiance measurements from health and damage cotton plants over eight days. A hand-held spectroradiometer operating from 350 to 2500 nm was used. Several algorithms were evaluated, and a ranking approach was adopted to identify the most contributive wavelengths for detecting the damage. The Self-Organizing Map method was applied to organize the spectral wavelengths into groups, favoring the theoretical model creation for two sensors: OLI (Landsat-8) and MSI (Sentinel-2). It was found that the Random Forest algorithm produced the most suitable model, and the last day of analysis was better to separate healthy and damaged plants (F-measure: 0.912). The best spectral regions range from the red to near-infrared (650 to 1350 nm) and the shortwave infrared (1570 to 1640 nm). The theoretical model returned accurate results using both sensors (OLI, F-Measure?=?0.865, and MSI, F-Measure?=?0.886). In conclusion, the proposed framework contributes to accurately identifying cotton plants under the Spodoptera frugiperda attack for both hyperspectral and multispectral scales. 653 $aInsect damage 653 $aMachine learning 653 $aSpectral data 653 $aTheoretical model 700 1 $aGOMES, F. D. G. 700 1 $aPINHEIRO, M. M. F. 700 1 $aFURUYA, D. E. G. 700 1 $aGONÇALVEZ, W. N. 700 1 $aMARCATO JUNIOR, J. 700 1 $aMICHEREFF, M. F. F. 700 1 $aMORAES, M. C. B. 700 1 $aBORGES, M. 700 1 $aLAUMANN, R. A. 700 1 $aLIESENBERG, V. 700 1 $aJORGE, L. A. de C. 700 1 $aOSCO, L. P. 773 $tPrecision Agriculture, 2021.
Download
Esconder MarcMostrar Marc Completo |
|
Registro original: |
Embrapa Instrumentação (CNPDIA) |
|
|
Biblioteca |
ID |
Origem |
Tipo/Formato |
Classificação |
Cutter |
Registro |
Volume |
Status |
URL |
Voltar
|
|
|
| Registros recuperados : 10 | |
| 3. |  | RAMOS, L. R.; SILVA, G. A. P.; SILVA, G. B.; FILIPPI, M. C.; PRABHU, A. S. Indução sistêmica de resistência a brusone nas folhas em arroz por isolado avirulento de Magnaporthe grisea. Fitopatologia Brasileira, Brasília, DF, v. 32, p. S 270, ago. 2007. Suplemento. ref. 0805. Edição dos Resumos do XL Congresso Brasileiro de Fitopatologia, Maringá, PR, ago. 2007.| Tipo: Resumo em Anais de Congresso |
| Biblioteca(s): Embrapa Arroz e Feijão. |
|    |
| 4. |  | FLOSS, E. L.; ALMEIDA, J.; PACHECO, M. T.; CARVALHO, F. I. F. de; GODOY, R.; MATZEMBACKER, R. G.; OLIVEIRA, J. C.; RAMOS, L. R. M. Análise conjunta de ensaio brasileiro de cultivares recomendados de aveia, 1998. In: REUNIAO DA COMISSAO BRASILEIRA DE PESQUISA DE AVEIA, 19., 1999, Porto Alegre, RS. Anais... Porto Alegre: UFRGS, 1999. p.157-160.| Tipo: Artigo em Anais de Congresso |
| Biblioteca(s): Embrapa Pecuária Sudeste. |
|    |
| 5. |  | FLOSS, E. L.; ALMEITA, J.; PACHECO, M.; CARVALHO, F. I. F. de; GODOY, R.; OLIVEIRA, J. C.; RAMOS, L. R. M. Análise conjunta do ensaio brasileiro de linhagens de aveia, 1998. In: REUNIAO DA COMISSAO BRASILEIRA DE PESQUISA DE AVEIA, 19., 1999, Porto Alegre, RS. Anais... Porto Alegre: UFRGS, 1999. p.153-156.| Tipo: Artigo em Anais de Congresso |
| Biblioteca(s): Embrapa Pecuária Sudeste. |
|    |
| 6. |  | FLOSS, E. L.; FEDERIZZI, L. C.; ALMEIDA, J. L.; SILVA, A. C. da; CARVALHO, F. I. F.; RAMOS, L. R. M.; GODOY, R.; OLIVEIRA, J. C. Análise conjunta do ensaio nacional de linhagens de aveia, 1996. In: REUNIÃO DA COMISSÃO SUL-BRASILEIRA DE PESQUISA DE AVEIA, 17., 1997, Passo Fundo, RS. Anais... Passo Fundo: CSBPA/UFPF, 1997. p.105-118.| Tipo: Artigo em Anais de Congresso |
| Biblioteca(s): Embrapa Pecuária Sudeste. |
|    |
| 8. |  | FLOSS, E. L; PACHECO, M.; ALMEIDA, J.; SILVA, A. C. da; CARVALHO, F. I. F. de; LEVI RAMOS, L. R. M.; GODOY, R.; OLIVEIRA, J. C.; ROSA FILHO, O. S. Análise conjunta do ensaio brasileiro de linhagens de aveia, 1997. In: REUNIÃO DA COMISSAO BRASILEIRA DE PESQUISA DE AVEIA, 18.; 1998, Londrina. Anais...Londrina: IAPAR, 1998, p.116-130.| Biblioteca(s): Embrapa Pecuária Sudeste. |
|    |
| 9. |  | FLOSS, E. L.; ALVES, A. C.; SILVA, A. C. da; CARVALHO, F. I. F. de; OLIVEIRA, J. C.; ALMEIDA, J.; RAMOS, L. R. M.; FEDERIZZI, L. C.; PACHECO, M.; ENDER, M.; ALMEIDA, M. L.; MATZEMBACKER, R. G.; GODOY, R. Adaptabilidade de cultivares de aveia branca em diferentes regiões do Centro-Sul do Brasil. In: REUNIÃO DA COMISSÃO BRASILEIRA DE PESQUISA DE AVEIA, 21., 2001, Lages, SC. Resultados experimentais... Lages: UDESC, 2001. p. 51-63.| Tipo: Artigo em Anais de Congresso |
| Biblioteca(s): Embrapa Pecuária Sudeste. |
|    |
| 10. |  | FOGACA, F. H. dos S.; MELO, P. T. DA SILVA; RAMOS, L. R. V.; MASSONE, C. G.; RIBEIRO, A. P. de O.; GOMES, F. dos S.; BORGUINI, R. G.; SOUZA, T. M. S. F. I. DE; CARREIRA, R. DA S. Método multianalitos para determinação da bioacumulação e bioacessibilidade. In: Tecnologia avançadas e suas abordagens: método multianalitos para determinação da bioacumulação e bioacessibilidade de hidrocarbonetos policíclicos aromáticos em pescado. Seven Editora, 2023. Cap. 28, p. 1-12.| Tipo: Capítulo em Livro Técnico-Científico |
| Biblioteca(s): Embrapa Agroindústria de Alimentos. |
|    |
| Registros recuperados : 10 | |
|
| Nenhum registro encontrado para a expressão de busca informada. |
|
|