Registro Completo |
Biblioteca(s): |
Embrapa Arroz e Feijão. |
Data corrente: |
04/10/2021 |
Data da última atualização: |
08/12/2021 |
Tipo da produção científica: |
Artigo em Periódico Indexado |
Autoria: |
MORAIS JÚNIOR, O. P.; BRESEGHELLO, F.; DUARTE, J. B.; COELHO, A. S. G.; BORBA, T. C. O.; AGUIAR, J. T.; NEVES, P. C. F.; MORAIS, O. P. |
Afiliação: |
ODILON PEIXOTO MORAIS JUNIOR, UFG; FLAVIO BRESEGHELLO, CNPAF; JOAO BATISTA DUARTE, UFG; ALEXANDRE S. G. COELHO, UFG; TEREZA CRISTINA DE OLIVEIRA BORBA, CNPAF; JORDENE T. AGUIAR; PERICLES DE CARVALHO FERREIRA NEVES, CNPAF; ORLANDO PEIXOTO DE MORAIS, CNPAF. |
Título: |
Assessing prediction models for different traits in a rice population derived from a Recurrent Selection Program. |
Ano de publicação: |
2018 |
Fonte/Imprenta: |
Crop Science, v. 58, n. 6, p. 2347-2359, Nov./Dec. 2018. |
ISSN: |
0011-183X |
DOI: |
https://doi.org/10.2135/cropsci2018.02.0087 |
Idioma: |
Inglês |
Conteúdo: |
Genomic selection (GS) is a promising approach to improve rice (Oryza sativa L.) populations by using genome-wide markers for selection prior to phenotyping to estimate breeding values. In this study, our objectives were to compare certain prediction models with different struc-tures of genetic relationship and statistical approaches for relevant traits in rice and to discuss some implications for integrating GS into a recurrent selection program of irrigated rice. We assessed nine models in terms of predictive potential, using empirical data from S1:3 progenies phenotyped for eight traits with different heritabilities and genotyped with 6174 high-quality single nucleotide polymorphism markers. For all traits, marker-based models outperformed prediction based on pedigree records alone. A similar level of accuracy was observed for many models, although the level of prediction stability and prediction bias varied widely. Random forest was slightly superior for less complex traits, although with high predic-tion bias, whereas the semiparametric RKHS method (reproducing kernel Hilbert spaces) was superior for many traits, showing high stability and low bias. Bayesian variable selec-tion method Bayes Cp showed acceptable accuracy and stability for several traits and thus could be useful for genomic prediction aiming at persisting accuracy for a long-term recurrent selection. |
Thesagro: |
Arroz; Melhoramento Genético Vegetal; Oryza Sativa; Seleção Recorrente. |
Thesaurus Nal: |
Plant breeding; Recurrent selection; Rice. |
Categoria do assunto: |
G Melhoramento Genético |
Marc: |
null Download
Esconder MarcMostrar Marc Completo |
Registro original: |
Embrapa Arroz e Feijão (CNPAF) |