| |
|
|
 | Acesso ao texto completo restrito à biblioteca da Embrapa Agrobiologia. Para informações adicionais entre em contato com cnpab.biblioteca@embrapa.br. |
|
Registro Completo |
|
Biblioteca(s): |
Embrapa Agrobiologia. |
|
Data corrente: |
05/03/2021 |
|
Data da última atualização: |
11/11/2022 |
|
Tipo da produção científica: |
Capítulo em Livro Técnico-Científico |
|
Autoria: |
ZAMAN, M.; KLEINEIDAM, K.; BAKKEN, L.; BERENDT, J.; BRACKEN, C.; BUTTERBACH-BAHL, K.; CAI, Z.; CHANG, S. X.; CLOUGH, T.; DAWAR, K.; DING, W. X.; DÖRSCH, P.; MARTINS, M. dos R.; ECKHARDT, C.; FIEDLER, T.; FROSCH, T.; GOOPY, J.; GORRES, C. M.; GUPTA, A.; HENJES, S.; HOFMMAN, M. E. G.; HORN, M. A.; JAHANGIR, M. M. R.; JANSEN-WILLEMS, A.; LENHART, K.; HENG, L.; LEWICKA-SZCZEBAK, D.; LUCIC, G.; MERBOLD, L.; MOHN, J.; MOLSTAD, L.; MOSER, G.; MURPHY, P.; SANZ-COBENA, A.; SIMEK, M.; URQUIAGA, S.; WELL, R.; WRAGE-MÖNNIG, N.; ZAMAN, S.; SHANG, J.; MÜLLER, C. |
|
Título: |
Climate-smart agriculture practices for mitigating greenhouse gas emissions. |
|
Ano de publicação: |
2021 |
|
Fonte/Imprenta: |
In: ZAMAN, M.; HENG, L.; Müller, C. (Ed.). Measuring emission of agricultural greenhouse gases and developing mitigation options using nuclear and related techniques: applications of nuclear techniques for GHGs. London: Springer, 2021. Chapter 8. |
|
Páginas: |
p. 303-328 |
|
Idioma: |
Inglês |
|
Conteúdo: |
Agricultural lands make up approximately 37% of the global land surface, and agriculture is a significant source of greenhouse gas (GHG) emissions, including carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). Those GHGs are responsible for the majority of the anthropogenic global warming effect. Agricultural GHG emissions are associated with agricultural soil management (e.g. tillage), use of both synthetic and organic fertilisers, livestock management, burning of fossil fuel for agricultural perations, and burning of agricultural residues and land use change. When natural ecosystems such as grasslands are converted to agricultural production, 20?40% of the soil organic carbon (SOC) is lost over time, following cultivation. We thus need to develop management practices that can maintain or even increase SOC storage in and reduce GHG emissions from agricultural ecosystems. We need to design systematic approaches and agricultural strategies that can ensure sustainable food production under predicted climate change scenarios, approaches that are being called climate-smart agriculture (CSA). Climate-smart agricultural management practices, including conservation tillage, use of cover crops and biochar application to agricultural fields, and strategic application of synthetic and organic fertilisers have been considered a way to reduce GHG emission from agriculture. Agricultural management practices can be improved to decreasing disturbance to the soil by decreasing the frequency and extent of cultivation as a way to minimise soil C loss and/or to increase soil C storage. Fertiliser nitrogen (N) use efficiency can be improved to reduce fertilizer N application and N loss. Management measures can also be taken to minimise agricultural biomass burning. This chapter reviews the current literature on CSA practices that are available to reduce GHG emissions and increase soil C sequestration and develops a guideline on best management practices to reduce GHG emissions, increase C sequestration, and enhance crop productivity in agricultural production systems. MenosAgricultural lands make up approximately 37% of the global land surface, and agriculture is a significant source of greenhouse gas (GHG) emissions, including carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). Those GHGs are responsible for the majority of the anthropogenic global warming effect. Agricultural GHG emissions are associated with agricultural soil management (e.g. tillage), use of both synthetic and organic fertilisers, livestock management, burning of fossil fuel for agricultural perations, and burning of agricultural residues and land use change. When natural ecosystems such as grasslands are converted to agricultural production, 20?40% of the soil organic carbon (SOC) is lost over time, following cultivation. We thus need to develop management practices that can maintain or even increase SOC storage in and reduce GHG emissions from agricultural ecosystems. We need to design systematic approaches and agricultural strategies that can ensure sustainable food production under predicted climate change scenarios, approaches that are being called climate-smart agriculture (CSA). Climate-smart agricultural management practices, including conservation tillage, use of cover crops and biochar application to agricultural fields, and strategic application of synthetic and organic fertilisers have been considered a way to reduce GHG emission from agriculture. Agricultural management practices can be improved to decreasing disturbance to the soil by decreasing the ... Mostrar Tudo |
|
Thesaurus Nal: |
Carbon dioxide; Carbon sequestration; climate change; greenhouse gas emissions. |
|
Categoria do assunto: |
P Recursos Naturais, Ciências Ambientais e da Terra |
|
Marc: |
LEADER 03974naa a2200661 a 4500 001 2130525 005 2022-11-11 008 2021 bl uuuu u00u1 u #d 100 1 $aZAMAN, M. 245 $aClimate-smart agriculture practices for mitigating greenhouse gas emissions.$h[electronic resource] 260 $c2021 300 $ap. 303-328 520 $aAgricultural lands make up approximately 37% of the global land surface, and agriculture is a significant source of greenhouse gas (GHG) emissions, including carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). Those GHGs are responsible for the majority of the anthropogenic global warming effect. Agricultural GHG emissions are associated with agricultural soil management (e.g. tillage), use of both synthetic and organic fertilisers, livestock management, burning of fossil fuel for agricultural perations, and burning of agricultural residues and land use change. When natural ecosystems such as grasslands are converted to agricultural production, 20?40% of the soil organic carbon (SOC) is lost over time, following cultivation. We thus need to develop management practices that can maintain or even increase SOC storage in and reduce GHG emissions from agricultural ecosystems. We need to design systematic approaches and agricultural strategies that can ensure sustainable food production under predicted climate change scenarios, approaches that are being called climate-smart agriculture (CSA). Climate-smart agricultural management practices, including conservation tillage, use of cover crops and biochar application to agricultural fields, and strategic application of synthetic and organic fertilisers have been considered a way to reduce GHG emission from agriculture. Agricultural management practices can be improved to decreasing disturbance to the soil by decreasing the frequency and extent of cultivation as a way to minimise soil C loss and/or to increase soil C storage. Fertiliser nitrogen (N) use efficiency can be improved to reduce fertilizer N application and N loss. Management measures can also be taken to minimise agricultural biomass burning. This chapter reviews the current literature on CSA practices that are available to reduce GHG emissions and increase soil C sequestration and develops a guideline on best management practices to reduce GHG emissions, increase C sequestration, and enhance crop productivity in agricultural production systems. 650 $aCarbon dioxide 650 $aCarbon sequestration 650 $aclimate change 650 $agreenhouse gas emissions 700 1 $aKLEINEIDAM, K. 700 1 $aBAKKEN, L. 700 1 $aBERENDT, J. 700 1 $aBRACKEN, C. 700 1 $aBUTTERBACH-BAHL, K. 700 1 $aCAI, Z. 700 1 $aCHANG, S. X. 700 1 $aCLOUGH, T. 700 1 $aDAWAR, K. 700 1 $aDING, W. X. 700 1 $aDÖRSCH, P. 700 1 $aMARTINS, M. dos R. 700 1 $aECKHARDT, C. 700 1 $aFIEDLER, T. 700 1 $aFROSCH, T. 700 1 $aGOOPY, J. 700 1 $aGORRES, C. M. 700 1 $aGUPTA, A. 700 1 $aHENJES, S. 700 1 $aHOFMMAN, M. E. G. 700 1 $aHORN, M. A. 700 1 $aJAHANGIR, M. M. R. 700 1 $aJANSEN-WILLEMS, A. 700 1 $aLENHART, K. 700 1 $aHENG, L. 700 1 $aLEWICKA-SZCZEBAK, D. 700 1 $aLUCIC, G. 700 1 $aMERBOLD, L. 700 1 $aMOHN, J. 700 1 $aMOLSTAD, L. 700 1 $aMOSER, G. 700 1 $aMURPHY, P. 700 1 $aSANZ-COBENA, A. 700 1 $aSIMEK, M. 700 1 $aURQUIAGA, S. 700 1 $aWELL, R. 700 1 $aWRAGE-MÖNNIG, N. 700 1 $aZAMAN, S. 700 1 $aSHANG, J. 700 1 $aMÜLLER, C. 773 $tIn: ZAMAN, M.; HENG, L.; Müller, C. (Ed.). Measuring emission of agricultural greenhouse gases and developing mitigation options using nuclear and related techniques: applications of nuclear techniques for GHGs. London: Springer, 2021. Chapter 8.
Download
Esconder MarcMostrar Marc Completo |
|
Registro original: |
Embrapa Agrobiologia (CNPAB) |
|
|
Biblioteca |
ID |
Origem |
Tipo/Formato |
Classificação |
Cutter |
Registro |
Volume |
Status |
URL |
Voltar
|
|
|
| Registros recuperados : 13 | |
| 1. |  | FRANÇA, A. M. S.; SANO, E. E.; SOUSA, A. O. Avaliação de fusão de imagens CBERS/2B no mapeamento de áreas úmidas do Distrito Federal. In: ENCONTRO DE JOVENS TALENTOS DA EMBRAPA CERRADOS, 4., 2009, Planaltina, DF. Resumos apresentados... Planaltina, DF: Embrapa Cerrados, 2009. p. 155-156 (Embrapa Cerrados. Documentos, 243).| Tipo: Resumo em Anais de Congresso |
| Biblioteca(s): Embrapa Cerrados. |
|    |
| 4. |  | ALMEIDA, A. P.; ANDRIOLI, A.; SOUSA, A. O.; MACIEL, T. T. Superovulação em caprinos nativos da raça Moxotó. In: CONGRESSO BRASILEIRO DE MEDICINA VETERINÁRIA, 31., 2004, São luis. A medicina veterinária no novo milênio: transformação social, preservação ambiental e segurança alimentar: resumos. São Luis, Sociedade Brasileira de Medicina Veterinária, 2004. Seção biotecnologia da reprodução. 1 CD-ROM.| Tipo: Resumo em Anais de Congresso |
| Biblioteca(s): Embrapa Caprinos e Ovinos. |
|    |
| 5. |  | SOUSA, A. O.; RODRIGUES, B. A.; NARCISO, M. G.; MENESES, M. V.; GUIMARAES, C. M. Software de obtenção do Índice de Vegetação por Diferença Normalizada. In: SEMINÁRIO JOVENS TALENTOS, 9., 2015, Santo Antônio de Goiás. Coletânea dos resumos apresentados. Santo Antônio de Goiás: Embrapa Arroz e Feijão, 2015. p. 94. (Embrapa Arroz e Feijão. Documentos, 309).| Tipo: Resumo em Anais de Congresso |
| Biblioteca(s): Embrapa Arroz e Feijão. |
|    |
| 6. |  | ORNELLAS, F. L. S.; DANTAS, B. F.; COSTA, D. S.; SOUSA, A. O.; BARBOSA, R. M. Teste de vigor baseado na liberação de etanol em sementes de melão. Informativo ABRATES, Londrina, v. 27, n. 2, p. 204, ago. 2017. Número especial. Edição dos Resumos do XX Congresso Brasileiro de Sementes, Foz do Iguaçu, ago. 2017.| Tipo: Resumo em Anais de Congresso |
| Biblioteca(s): Embrapa Semiárido. |
|    |
| 9. |  | ORNELLAS, F. L. S.; SOUSA, A. O. de; PIROVANI, C. P.; ARAÚJO, M. do N; COSTA, D. S. da; DANTAS, B. F.; BARBOSA, R. M. Gene expression, biochemical and physiological activities in evaluating melon seed vigor through ethanol release. Scientia Horticulturae, v. 261, 108884, 2020.| Tipo: Artigo em Periódico Indexado | Circulação/Nível: A - 1 |
| Biblioteca(s): Embrapa Semiárido. |
|    |
| 10. |  | GONÇALVES, L. P.; ALVES, T. F. O.; MARTINS, C. P. S.; SOUSA, A. O.; GIRARDI, E. A.; GESTEIRA, A. da S.; SOARES FILHO, W. dos S.; COSTA, M. G. C. Analysis of oxidative damage in varieties of Citrus rootstocks subjected to water deficit. WORKSHOP ON BIOTIC AND ABIOTIC STRESS TOLERANCE IN PLANTS, 2013, Ilhéus. The challenge for the 21st century: book of abstracts. [S.l.]: International Advanced Biology Consortium, 2013.Oline. S02001.| Tipo: Resumo em Anais de Congresso |
| Biblioteca(s): Embrapa Mandioca e Fruticultura. |
|    |
| 11. |  | MENEZES, S. P.; SILVA, D. M. de A.; LIMA, E. M.; SOUSA, A. O. de; ANDRADE, B. S.; LEMOS, L. S. L.; GRAMACHO, A. P.; GESTEIRA, A. da S.; PIROVANI, C. P.; MICHELI, F. The pathogenesis-related protein PR-4b from Theobroma cacao presents RNase activity, Ca2+ and Mg2+ dependent-DNase activity and antifungal action on Moniliophthora perniciosa. BMC Plant Biology, 2014.| Tipo: Artigo em Periódico Indexado | Circulação/Nível: A - 1 |
| Biblioteca(s): Embrapa Mandioca e Fruticultura. |
|    |
| 12. |  | DÓRIA, M. S.; SOUSA, A. O. de; BARBOSA, C. de J.; COSTA, M. G. C.; GESTEIRA, A. da S.; SOUZA, R. M.; FREITAS, A. C. O.; PIROVANI, C. P. Citrus tristeza virus (CTV) causing proteomic and enzymatic changes in sweet orange variety "Westin". Plos One, July, 2015.| Tipo: Artigo em Periódico Indexado | Circulação/Nível: A - 1 |
| Biblioteca(s): Embrapa Mandioca e Fruticultura. |
|    |
| 13. |  | GONÇALVES, L. P.; ALVES, T. F. O.; MARTINS, C. P. S.; SOUSA, A. O. de; SANTOS, I. C. dos; PIROVANI, C. P.; ALMEIDA, A-A. F.; COELHO FILHO, M. A.; GESTEIRA, A. da S.; SOARES FILHO, W. dos S.; GIRARDI, E. A.; COSTA, M. G. C. Rootstock-induced physiological and biochemical mechanisms of drought tolerance in sweet orange. Acta Physiologiae Plantarum, June, .38- 174, 2016. 0137-5881| Tipo: Artigo em Periódico Indexado | Circulação/Nível: A - 2 |
| Biblioteca(s): Embrapa Mandioca e Fruticultura. |
|    |
| Registros recuperados : 13 | |
|
| Expressão de busca inválida. Verifique!!! |
|
|