|
|
Registro Completo |
Biblioteca(s): |
Embrapa Agricultura Digital. |
Data corrente: |
10/12/2007 |
Data da última atualização: |
11/05/2017 |
Tipo da produção científica: |
Artigo em Periódico Indexado |
Autoria: |
YAMAGISHI, M. E. B.; SHIMABUKURO, A. I. |
Afiliação: |
MICHEL EDUARDO BELEZA YAMAGISHI, CNPTIA; ALEX ITIRO SHIMABUKURO, PUC-Campinas. |
Título: |
Nucleotide frequencies in human genome and Fibonacci numbers. |
Ano de publicação: |
2008 |
Fonte/Imprenta: |
Bulletin of Mathematical Biology, v. 70, n. 3, p. 643-653, Apr. 2008. |
DOI: |
10.1007/s11538-007-9261-6 |
Idioma: |
Inglês |
Conteúdo: |
Abstract. This work presents a mathematical model that establishes an interesting connection between nucleotide frequencies in human single-stranded DNA and the famous Fibonacci's numbers. The model relies on two assumptions. First, Chargaff's second parity rule should be valid, and second, the nucleotide frequencies should approach limit values when the number of bases is sufficiently large. Under these two hypotheses, it is
possible to predict the human nucleotide frequencies with accuracy. This result may be used as evidence to the Fibonacci string model that was proposed to the sequence growth of DNA repetitive sequences. It is noteworthy that the predicted values are solutions of an optimization problem, which is commonplace in many of nature's phenomena. |
Palavras-Chave: |
Chargaff's parity rules; Fibonacci numbers; Genoma humano; Nucleotide frequencies; Números de Fibonacci; Optimization problem. |
Thesagro: |
Modelo matemático. |
Thesaurus Nal: |
Mathematical models; Nucleotides; Repetitive sequences; System optimization. |
Categoria do assunto: |
X Pesquisa, Tecnologia e Engenharia |
URL: |
https://ainfo.cnptia.embrapa.br/digital/bitstream/item/159709/1/AP-Nucleotide-Yamagishi-2008.pdf
|
Marc: |
LEADER 01625naa a2200277 a 4500 001 1001091 005 2017-05-11 008 2008 bl uuuu u00u1 u #d 024 7 $a10.1007/s11538-007-9261-6$2DOI 100 1 $aYAMAGISHI, M. E. B. 245 $aNucleotide frequencies in human genome and Fibonacci numbers.$h[electronic resource] 260 $c2008 520 $aAbstract. This work presents a mathematical model that establishes an interesting connection between nucleotide frequencies in human single-stranded DNA and the famous Fibonacci's numbers. The model relies on two assumptions. First, Chargaff's second parity rule should be valid, and second, the nucleotide frequencies should approach limit values when the number of bases is sufficiently large. Under these two hypotheses, it is possible to predict the human nucleotide frequencies with accuracy. This result may be used as evidence to the Fibonacci string model that was proposed to the sequence growth of DNA repetitive sequences. It is noteworthy that the predicted values are solutions of an optimization problem, which is commonplace in many of nature's phenomena. 650 $aMathematical models 650 $aNucleotides 650 $aRepetitive sequences 650 $aSystem optimization 650 $aModelo matemático 653 $aChargaff's parity rules 653 $aFibonacci numbers 653 $aGenoma humano 653 $aNucleotide frequencies 653 $aNúmeros de Fibonacci 653 $aOptimization problem 700 1 $aSHIMABUKURO, A. I. 773 $tBulletin of Mathematical Biology$gv. 70, n. 3, p. 643-653, Apr. 2008.
Download
Esconder MarcMostrar Marc Completo |
Registro original: |
Embrapa Agricultura Digital (CNPTIA) |
|
Biblioteca |
ID |
Origem |
Tipo/Formato |
Classificação |
Cutter |
Registro |
Volume |
Status |
URL |
Voltar
|
|
Registros recuperados : 229 | |
Registros recuperados : 229 | |
|
Nenhum registro encontrado para a expressão de busca informada. |
|
|