|
|
 | Acesso ao texto completo restrito à biblioteca da Embrapa Meio Ambiente. Para informações adicionais entre em contato com cnpma.biblioteca@embrapa.br. |
Registro Completo |
Biblioteca(s): |
Embrapa Meio Ambiente. |
Data corrente: |
09/02/2018 |
Data da última atualização: |
30/10/2019 |
Tipo da produção científica: |
Artigo em Periódico Indexado |
Autoria: |
GRUTZMACHER, P.; PUGA, A. P.; BIBAR, M. P. S.; COSCIONE, A. R.; PACKER, A. P.; ANDRADE, C. A. de. |
Afiliação: |
PRISCILA GRUTZMACHER; ALINE PEREGRINA PUGA, FAPESP; MARIA PAULA SILVEIRA BIBAR, JBS Ambiental; ALINE RENEE COSCIONE, IAC; ANA PAULA CONTADOR PACKER, CNPMA; CRISTIANO ALBERTO DE ANDRADE, CNPMA. |
Título: |
Carbon stability and mitigation of fertilizer induced N2O emissions in soil amended with biochar. |
Ano de publicação: |
2018 |
Fonte/Imprenta: |
Science of The Total Environment, v. 625, p. 1459-1466, 2018. |
DOI: |
https://doi.org/10.1016/j.scitotenv.2017.12.196 |
Idioma: |
Inglês |
Conteúdo: |
Biochar is a promising tool for an efficient and low environmental impact agriculture since can offer both soil carbon (C) sequestration and mitigation of nitrous oxide (N2O) emissions. The extent of biochar C stability after soil amendment and efficiency in reducing N2O emissions from an external nitrogen (N) source were accessed through laboratory incubations. A clay loam soil was amended with chicken manure (CM), sewage sludge (SS), eucalyptus sawdust (ES) and filter cake (FC) feedstocks and corresponding slow-pyrolysis (400 °C) biochars at 5 g C kg? 1 soil in combination with two N fertilizer rates (0 and 140 mg N kg? 1 soil). Carbon dioxide (CO2) and N2O emissions were measured during 60 days. Biochars and feedstocks CO2 emissions were described by an exponential first order kinetics model. For C mineralization an interaction effect was observed for feedstock source and organic amendment. Lower values of mineralizable C was found for biochars than corresponding feedstocks, except for ES. Carbon losses in 60 days of incubation totaled between 0.8 and 9.4% and 2.4 and 32% for biochars and feedstocks, respectively. Regarding to N2O emissions, only CM-biochar impacted emissions with a two-fold increase in non-fertilized soil. When NH4NO3 was co-applied, biochars reduced fertilizer induced N2O emissions, reaching a seven-fold reduction in SS-biochar treatment. The fertilizer emission factor (EF) decreased with biochar amendments as well, varying between 0.01 and 0.08% of the fertilizer N emitted as N2O, which shows the biochar potential to reduce fertilizer induced N2O emissions, with major reduction by SS-biochar mitigating 87% of the soil-fertilizer emissions. Such potential could be explored by designing biochars based on feedstock chemical and structural properties, including a mixed feedstock source biochar that promotes C sequestration and mitigates N2O emissions. MenosBiochar is a promising tool for an efficient and low environmental impact agriculture since can offer both soil carbon (C) sequestration and mitigation of nitrous oxide (N2O) emissions. The extent of biochar C stability after soil amendment and efficiency in reducing N2O emissions from an external nitrogen (N) source were accessed through laboratory incubations. A clay loam soil was amended with chicken manure (CM), sewage sludge (SS), eucalyptus sawdust (ES) and filter cake (FC) feedstocks and corresponding slow-pyrolysis (400 °C) biochars at 5 g C kg? 1 soil in combination with two N fertilizer rates (0 and 140 mg N kg? 1 soil). Carbon dioxide (CO2) and N2O emissions were measured during 60 days. Biochars and feedstocks CO2 emissions were described by an exponential first order kinetics model. For C mineralization an interaction effect was observed for feedstock source and organic amendment. Lower values of mineralizable C was found for biochars than corresponding feedstocks, except for ES. Carbon losses in 60 days of incubation totaled between 0.8 and 9.4% and 2.4 and 32% for biochars and feedstocks, respectively. Regarding to N2O emissions, only CM-biochar impacted emissions with a two-fold increase in non-fertilized soil. When NH4NO3 was co-applied, biochars reduced fertilizer induced N2O emissions, reaching a seven-fold reduction in SS-biochar treatment. The fertilizer emission factor (EF) decreased with biochar amendments as well, varying between 0.01 and 0.08% of the... Mostrar Tudo |
Palavras-Chave: |
Biocarvão; Biomassa pirolisada; Black carbon; Pyrolized biomass. |
Thesagro: |
Biomassa; Carbono; Nitrogênio. |
Thesaurus Nal: |
Biochar; carbon sequestration; Greenhouse gas emissions; nitrogen; Pyrolysis. |
Categoria do assunto: |
P Recursos Naturais, Ciências Ambientais e da Terra |
Marc: |
LEADER 02891naa a2200337 a 4500 001 2087580 005 2019-10-30 008 2018 bl uuuu u00u1 u #d 024 7 $ahttps://doi.org/10.1016/j.scitotenv.2017.12.196$2DOI 100 1 $aGRUTZMACHER, P. 245 $aCarbon stability and mitigation of fertilizer induced N2O emissions in soil amended with biochar.$h[electronic resource] 260 $c2018 520 $aBiochar is a promising tool for an efficient and low environmental impact agriculture since can offer both soil carbon (C) sequestration and mitigation of nitrous oxide (N2O) emissions. The extent of biochar C stability after soil amendment and efficiency in reducing N2O emissions from an external nitrogen (N) source were accessed through laboratory incubations. A clay loam soil was amended with chicken manure (CM), sewage sludge (SS), eucalyptus sawdust (ES) and filter cake (FC) feedstocks and corresponding slow-pyrolysis (400 °C) biochars at 5 g C kg? 1 soil in combination with two N fertilizer rates (0 and 140 mg N kg? 1 soil). Carbon dioxide (CO2) and N2O emissions were measured during 60 days. Biochars and feedstocks CO2 emissions were described by an exponential first order kinetics model. For C mineralization an interaction effect was observed for feedstock source and organic amendment. Lower values of mineralizable C was found for biochars than corresponding feedstocks, except for ES. Carbon losses in 60 days of incubation totaled between 0.8 and 9.4% and 2.4 and 32% for biochars and feedstocks, respectively. Regarding to N2O emissions, only CM-biochar impacted emissions with a two-fold increase in non-fertilized soil. When NH4NO3 was co-applied, biochars reduced fertilizer induced N2O emissions, reaching a seven-fold reduction in SS-biochar treatment. The fertilizer emission factor (EF) decreased with biochar amendments as well, varying between 0.01 and 0.08% of the fertilizer N emitted as N2O, which shows the biochar potential to reduce fertilizer induced N2O emissions, with major reduction by SS-biochar mitigating 87% of the soil-fertilizer emissions. Such potential could be explored by designing biochars based on feedstock chemical and structural properties, including a mixed feedstock source biochar that promotes C sequestration and mitigates N2O emissions. 650 $aBiochar 650 $acarbon sequestration 650 $aGreenhouse gas emissions 650 $anitrogen 650 $aPyrolysis 650 $aBiomassa 650 $aCarbono 650 $aNitrogênio 653 $aBiocarvão 653 $aBiomassa pirolisada 653 $aBlack carbon 653 $aPyrolized biomass 700 1 $aPUGA, A. P. 700 1 $aBIBAR, M. P. S. 700 1 $aCOSCIONE, A. R. 700 1 $aPACKER, A. P. 700 1 $aANDRADE, C. A. de 773 $tScience of The Total Environment$gv. 625, p. 1459-1466, 2018.
Download
Esconder MarcMostrar Marc Completo |
Registro original: |
Embrapa Meio Ambiente (CNPMA) |
|
Biblioteca |
ID |
Origem |
Tipo/Formato |
Classificação |
Cutter |
Registro |
Volume |
Status |
URL |
Voltar
|
|
Registros recuperados : 1 | |
1. |  | BHUNJUN, C. S.; CHEN, Y. J.; PHUKHAMSAKDA, C.; BOEKHOUT, T.; GROENEWALD, J. Z.; MCKENZI, E. H. C.; FRANCISCO, E. C.; FRISVAD, J. C.; GROENEWALD, M.; HURDEAL, V. G.; LUANGSA-ARD, J.; PERRONE, G.; VISAGIE, C. M.; BAI, F. Y.; BŁASZKOWSKI, J.; BRAUN, U.; SOUZA, F. A. de; QUEIROZ, M. B. de; DUTTA, A. K.; GONKHOM, D.; GOTO, B. T.; GUARNACCIA, V.; HAGEN, F.; HOUBRAKEN, J.; LACHANCE, M. A.; LI, J. J.; LUO, K. Y.; MAGURNO, F.; MONGKOLSAMRIT, S.; ROBERT, V.; ROY, N.; TIBPROMMA, S.; WANASINGHE, D. N.; WANG, D. Q.; WEI, D. P.; ZHAO, C. L.; AIPHUK, W.; AJAYI-OYETUNDE, O.; ARANTES, T. D.; ARAUJO, J. C.; BEGEROW, D.; BAKHSHI, M.; BARBOSA, R. N.; BEHRENS, F. H.; BENSCH, K.; BEZERRA, J. D. P.; BILAŃSKI, P.; BRADLEY, C. A.; BUBNER, B.; BURGESS, T. I.; BUYCK, B.; ČADEŽ, N.; CAI, L.; CALAÇA, F. J. S.; CAMPBELL, L. J.; CHAVERRI, P.; CHEN, Y. Y.; CHETHANA, K. W. T.; COETZEE, B.; COSTA, M. M.; CHEN, Q.; CUSTÓDIO, F. A.; DAI, Y. C.; DAMM, U.; SANTIAGO, A. L. C. M. A.; ANGELINI, R. M. de M.; DIJKSTERHUIS, J.; DISSANAYAKE, A. J.; DOILOM, M.; DONG, W.; ÁLVAREZ-DUARTE, E.; FISCHER, M.; GAJANAYAKE, A. J.; GENÉ, J.; GOMDOLA, D.; GOMES, A. A. M.; HAUSNER, G.; HE, M. Q.; HOU, L.; ITURRIETA-GONZÁLEZ, I.; JAMI, F.; JANKOWIAK, R.; JAYAWARDENA, R. S.; KANDEMIR, H.; KISS, L.; KOBMOO, N.; KOWALSKI, T.; LANDI, L.; LIN, C. G.; LIU, J. K.; LIU, X. B.; LOIZIDES, M.; LUANGHARN, T.; MAHARACHCHIKUMBURA, S. S. N.; MKHWANAZI, G. J. M.; MANAWASINGHE, I. S.; MARIN-FELIX, Y.; MCTAGGART, A. R.; MOREAU, P. A.; MOROZOVA, O. V.; MOSTERT, L.; OSIEWACZ, H. D.; PEM, D.; PHOOKAMSAK, R.; POLLASTRO, S.; PORDEL, A.; POYNTNER, C.; PHILLIPS, A. J. L.; PHONEMANY, M.; PROMPUTTHA, I.; RATHNAYAKA, A. R.; RODRIGUES, A. M.; ROMANAZZI, G.; ROTHMANN, L.; SALGADO-SALAZAR, C.; SANDOVAL-DENIS, M.; SAUPE, S. J.; SCHOLLER, M.; SCOTT, P.; SHIVAS, R. G.; SILAR, P.; SILVA-FILHO, A. G. S.; SOUZA-MOTTA, C. M.; SPIES, C. F. J.; STCHIGEL, A. M.; STERFLINGER, K.; SUMMERBELL, R. C.; SVETASHEVA, T. Y.; TAKAMATSU, S.; THEELEN, B.; THEODORO, R. C.; THINES, M.; THONGKLANG, N.; TORRES, R.; TURCHETTI, B.; VAN DEN BRULE, T.; WANG, X. W.; WARTCHOW, F.; WELTI, S.; WIJESINGHE, S. N.; WU, F.; XU, R.; YANG, Z. L.; YILMAZ, N.; YURKOV, A.; ZHAO, L.; ZHAO, R. L.; ZHOU, N.; HYDE, K. D.; CROUS, P. W. What are the 100 most cited fungal genera? Studies in Mycology, v. 108, p. 1-411, 2024.Tipo: Artigo em Periódico Indexado | Circulação/Nível: A - 1 |
Biblioteca(s): Embrapa Milho e Sorgo. |
|    |
Registros recuperados : 1 | |
|
Expressão de busca inválida. Verifique!!! |
|
|