BDPA - Bases de Dados da Pesquisa Agropecuária Embrapa
 






Acesso ao texto completo restrito à biblioteca da Embrapa Agricultura Digital. Para informações adicionais entre em contato com cnptia.biblioteca@embrapa.br.
Registro Completo
Biblioteca(s):  Embrapa Agricultura Digital.
Data corrente:  14/09/2017
Data da última atualização:  07/01/2020
Tipo da produção científica:  Artigo em Periódico Indexado
Autoria:  FERNANDES, J. L.; EBECKEN, N. F. F.; ESQUERDO, J. C. D. M.
Afiliação:  JEFERSON LOBATO FERNANDES, COPPE/UFRJ; NELSON FRANCISCO FAVILLA EBECKEN, COPPE/UFRJ; JULIO CESAR DALLA MORA ESQUERDO, CNPTIA.
Título:  Sugarcane yield prediction in Brazil using NDVI time series and neural networks ensemble.
Ano de publicação:  2017
Fonte/Imprenta:  International Journal of Remote Sensing, Basingstoke, v. 38, n 16, p. 4631-4644, 2017.
DOI:  http://dx.doi.org/10.1080/01431161.2017.1325531
Idioma:  Inglês
Conteúdo:  ABSTRACT. The objective of this study is to predict the sugarcane yield in São Paulo State, Brazil, using metrics derived from normalized difference vegetation index (NDVI) time series from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor and an ensemble model of artificial neural networks (ANNs). Sixty municipalities were selected and spectral metrics were extracted from the NDVI time series for each municipality from 2003 to 2012. A neural network wrapper with sequential backward elimination was applied to remove irrelevant and/or redundant features from the initial data set, reducing over-fitting and improving the prediction performance. Afterwards the sugarcane yield was predicted using a stacking ensemble model with ANN. At the predicted yield, the relative root mean square error (RRMSE) was 6.8% and the coefficient of determination (R2) was 0.61. The last three months were removed from the initial time-series data set to forecast the final sugarcane yield, and the process was repeated. The feature selection (FS) improved again the prediction performance and Stacking improved the FS results: RRMSE increased to 8% and R2 to 0.43. The yield was also estimated for the entire State, based on the average of the 60 selected municipalities, which were compared to the official data surveys. The Stacking method was able to estimate the sugarcane yield for São Paulo State with a smaller RMSE than the official data surveys, anticipating the crop forecast by three m... Mostrar Tudo
Palavras-Chave:  Artificial neural networks; Redes neurais; Séries temporais.
Thesagro:  Cana de açúcar.
Thesaurus Nal:  Neural networks; Sugarcane; Time series analysis.
Categoria do assunto:  X Pesquisa, Tecnologia e Engenharia
Marc:  Mostrar Marc Completo
Registro original:  Embrapa Agricultura Digital (CNPTIA)
Biblioteca ID Origem Tipo/Formato Classificação Cutter Registro Volume Status URL
CNPTIA19276 - 1UPCAP - DD
Voltar
Nenhum registro encontrado para a expressão de busca informada.
Expressão de busca inválida. Verifique!!!
 
 

Embrapa
Todos os direitos reservados, conforme Lei n° 9.610
Política de Privacidade
Área Restrita

Embrapa Agricultura Digital
Av. André Tosello, 209 - Barão Geraldo
Caixa Postal 6041- 13083-886 - Campinas, SP
SAC: https://www.embrapa.br/fale-conosco

Valid HTML 4.01 Transitional