|
|
Registro Completo |
Biblioteca(s): |
Embrapa Acre. |
Data corrente: |
07/07/2017 |
Data da última atualização: |
01/11/2022 |
Tipo da produção científica: |
Artigo em Anais de Congresso |
Autoria: |
MORAS FILHO, L. O.; FIGUEIREDO, E. O.; ISAAC JÚNIOR, M. A.; BARROS, V. C. C. de; HOTT, M. C.; BORGES, L. A. C. |
Afiliação: |
Luiz Otávio Moras Filho, Universidade Federal de Lavras (Ufla); EVANDRO ORFANO FIGUEIREDO, CPAF-Acre; Marcos Antônio Isaac Júnior, Universidade Federal de Lavras (Ufla); Vanessa Cabral Costa de Barros, Universidade Federal de Lavras (Ufla); Marcos Cicarini Hott, Universidade Federal de Lavras (Ufla); Luís Antônio Coimbra Borges, Universidade Federal de Lavras (Ufla). |
Título: |
Classificador de máxima verossimilhança aplicado à identificação de espécies nativas na Floresta Amazônica. |
Ano de publicação: |
2017 |
Fonte/Imprenta: |
In: SIMPÓSIO BRASILEIRO DE SENSORIAMENTO REMOTO, 18., 2017, Santos. Anais... Santos: Inpe, 2017. |
Páginas: |
6 p. |
ISBN: |
978-85-11-00088-1 |
Idioma: |
Português |
Conteúdo: |
Among a variety of digital classification methods based on remote sensing images, the Maximum Likelihood (ML) is widely used in environmental studies, mainly for land cover and vegetation analysis. This study aimed to evaluate the effectiveness of supervised classification by ML technique in a forest management area of dense ombrophilous forest, using one RapidEye image. With this purpose, it was conducted the census of species over 30 cm in diameter at breast height and calculated the Cover Value Index (CVI), and selected the 20 species with the highest CVI as a parameter for classification in a Geographic Information System. 13 of the 20 species selected in the study area were not identified by the classification method, and among the seven identified species, two were underestimated and the others were overestimated. Both the maximum likelihood technique and the spatial resolution of the image used were not suitable for supervised classification of native vegetation, with Kappa index of 0.05 and global accuracy of 5.53%. Studies using spectral characterization in leaf level supported by higher or hyper spectral and spatial resolution images are recommended to increase the accuracy of classification. |
Palavras-Chave: |
Acre; Amazonia Occidental; Amazônia Ocidental; Análisis estadístico; Bosques tropicales; Especies nativas; Estimación; Identificación de plantas; Manejo florestal; Máxima verossimilhança; Maximum Likelihood; Método de classificação digital; Rio Branco (AC); Sistemas de información geográfica; Teledetección; Western Amazon. |
Thesagro: |
Análise estatística; Espécie nativa; Estimativa; Floresta tropical; Identificação; Método estatístico; Sensoriamento remoto; Sistema de informação geográfica. |
Thesaurus Nal: |
Estimation; Geographic information systems; Indigenous species; Plant identification; Remote sensing; Statistical analysis; Tropical forests. |
Categoria do assunto: |
X Pesquisa, Tecnologia e Engenharia |
URL: |
https://ainfo.cnptia.embrapa.br/digital/bitstream/item/161507/1/26344.pdf
|
Marc: |
LEADER 02999nam a2200565 a 4500 001 2072220 005 2022-11-01 008 2017 bl uuuu u01u1 u #d 020 $a978-85-11-00088-1 100 1 $aMORAS FILHO, L. O. 245 $aClassificador de máxima verossimilhança aplicado à identificação de espécies nativas na Floresta Amazônica.$h[electronic resource] 260 $aIn: SIMPÓSIO BRASILEIRO DE SENSORIAMENTO REMOTO, 18., 2017, Santos. Anais... Santos: Inpe$c2017 300 $a6 p. 520 $aAmong a variety of digital classification methods based on remote sensing images, the Maximum Likelihood (ML) is widely used in environmental studies, mainly for land cover and vegetation analysis. This study aimed to evaluate the effectiveness of supervised classification by ML technique in a forest management area of dense ombrophilous forest, using one RapidEye image. With this purpose, it was conducted the census of species over 30 cm in diameter at breast height and calculated the Cover Value Index (CVI), and selected the 20 species with the highest CVI as a parameter for classification in a Geographic Information System. 13 of the 20 species selected in the study area were not identified by the classification method, and among the seven identified species, two were underestimated and the others were overestimated. Both the maximum likelihood technique and the spatial resolution of the image used were not suitable for supervised classification of native vegetation, with Kappa index of 0.05 and global accuracy of 5.53%. Studies using spectral characterization in leaf level supported by higher or hyper spectral and spatial resolution images are recommended to increase the accuracy of classification. 650 $aEstimation 650 $aGeographic information systems 650 $aIndigenous species 650 $aPlant identification 650 $aRemote sensing 650 $aStatistical analysis 650 $aTropical forests 650 $aAnálise estatística 650 $aEspécie nativa 650 $aEstimativa 650 $aFloresta tropical 650 $aIdentificação 650 $aMétodo estatístico 650 $aSensoriamento remoto 650 $aSistema de informação geográfica 653 $aAcre 653 $aAmazonia Occidental 653 $aAmazônia Ocidental 653 $aAnálisis estadístico 653 $aBosques tropicales 653 $aEspecies nativas 653 $aEstimación 653 $aIdentificación de plantas 653 $aManejo florestal 653 $aMáxima verossimilhança 653 $aMaximum Likelihood 653 $aMétodo de classificação digital 653 $aRio Branco (AC) 653 $aSistemas de información geográfica 653 $aTeledetección 653 $aWestern Amazon 700 1 $aFIGUEIREDO, E. O. 700 1 $aISAAC JÚNIOR, M. A. 700 1 $aBARROS, V. C. C. de 700 1 $aHOTT, M. C. 700 1 $aBORGES, L. A. C.
Download
Esconder MarcMostrar Marc Completo |
Registro original: |
Embrapa Acre (CPAF-AC) |
|
Biblioteca |
ID |
Origem |
Tipo/Formato |
Classificação |
Cutter |
Registro |
Volume |
Status |
URL |
Voltar
|
|
Registros recuperados : 1 | |
1. |  | MORAS FILHO, L. O.; FIGUEIREDO, E. O.; ISAAC JÚNIOR, M. A.; BARROS, V. C. C. de; HOTT, M. C.; BORGES, L. A. C. Classificador de máxima verossimilhança aplicado à identificação de espécies nativas na Floresta Amazônica. In: SIMPÓSIO BRASILEIRO DE SENSORIAMENTO REMOTO, 18., 2017, Santos. Anais... Santos: Inpe, 2017. 6 p.Tipo: Artigo em Anais de Congresso |
Biblioteca(s): Embrapa Acre. |
|    |
Registros recuperados : 1 | |
|
Nenhum registro encontrado para a expressão de busca informada. |
|
|