Registro Completo |
Biblioteca(s): |
Embrapa Agricultura Digital. |
Data corrente: |
08/01/2010 |
Data da última atualização: |
15/01/2020 |
Tipo da produção científica: |
Resumo em Anais de Congresso |
Autoria: |
HIGA, R. H.; TOZZI, C. L. |
Afiliação: |
ROBERTO HIROSHI HIGA, CNPTIA; CLÉSIO LUIS TOZZI, DCA/FEEC/UNICAMP. |
Título: |
Using Markov random fields to predict protein interface region. |
Ano de publicação: |
2009 |
Fonte/Imprenta: |
In: Encontro dos alunos e docentes do departamento de engenharia de computação e automação industrial, 2., 2009, Campinas. Anais... Campinas: UNICAMP, 2009. |
Páginas: |
p. 22-25. |
Idioma: |
Inglês |
Conteúdo: |
Protein interface region prediction is very helpful for molecular biologists since it is able to identify specific amino acids potentially inside the interface region for further experimental analysis. This can save specialists time as well as financial budget. Usually, this problem is modeled as a classification problem with contextual information taken into consideration in a post-processing procedure. We claim that this problem can be modeled as a contextual classification problem and propose to use Markov Random Fields - MRF for that. Obtained results show that the performance for this approach is compatible to other methods and deserves further research. Currently, we are evaluating this approach considering different parameters for the MRF models and establishing a suitable criterion for comparison with previous results. |
Palavras-Chave: |
Contextual classification; Interface proteica; Markov random fields; Modelagem; Pattern recognition; Protein interface region prediction. |
Categoria do assunto: |
X Pesquisa, Tecnologia e Engenharia |
Marc: |
LEADER 01567nam a2200205 a 4500 001 1579985 005 2020-01-15 008 2009 bl uuuu u00u1 u #d 100 1 $aHIGA, R. H. 245 $aUsing Markov random fields to predict protein interface region.$h[electronic resource] 260 $aIn: Encontro dos alunos e docentes do departamento de engenharia de computação e automação industrial, 2., 2009, Campinas. Anais... Campinas: UNICAMP$c2009 300 $ap. 22-25. 520 $aProtein interface region prediction is very helpful for molecular biologists since it is able to identify specific amino acids potentially inside the interface region for further experimental analysis. This can save specialists time as well as financial budget. Usually, this problem is modeled as a classification problem with contextual information taken into consideration in a post-processing procedure. We claim that this problem can be modeled as a contextual classification problem and propose to use Markov Random Fields - MRF for that. Obtained results show that the performance for this approach is compatible to other methods and deserves further research. Currently, we are evaluating this approach considering different parameters for the MRF models and establishing a suitable criterion for comparison with previous results. 653 $aContextual classification 653 $aInterface proteica 653 $aMarkov random fields 653 $aModelagem 653 $aPattern recognition 653 $aProtein interface region prediction 700 1 $aTOZZI, C. L.
Download
Esconder MarcMostrar Marc Completo |
Registro original: |
Embrapa Agricultura Digital (CNPTIA) |