| |
|
|
 | Acesso ao texto completo restrito à biblioteca da Embrapa Milho e Sorgo. Para informações adicionais entre em contato com rosangela.lacerda@embrapa.br. |
|
Registro Completo |
|
Biblioteca(s): |
Embrapa Milho e Sorgo. |
|
Data corrente: |
26/01/2006 |
|
Data da última atualização: |
28/05/2018 |
|
Tipo da produção científica: |
Artigo em Periódico Indexado |
|
Autoria: |
ZANDONADI, R. S.; PINTO, F. A. C.; SENA JUNIOR, D. G; QUEIROZ, D. M.; VIANA, P. A.; MANTOVANI, E. C. |
|
Afiliação: |
PAULO AFONSO VIANA, CNPMS; EVANDRO CHARTUNI MANTOVANI, CNPMS. |
|
Título: |
Identification of lesser cornstalk borer-attacked maize plants using infrared images. |
|
Ano de publicação: |
2005 |
|
Fonte/Imprenta: |
Biosystems Engineering, London, v. 91, n. 4, p. 433-439, 2005. |
|
DOI: |
10.1016/j.biosystemseng.2005.05.002 |
|
Idioma: |
Inglês |
|
Conteúdo: |
The lesser cornstalk borer (Elasmopalpus lignosellus) is a pest that damages the maize plants in the initial growing phase causing stand reduction that can result in yield decrease. The machine vision system could be an alternative for the development of site-specific management of this pest. The objective of this work was to develop and evaluate a machine vision algorithm for identifying maize plants attacked by lesser cornstalk borer based on colour infrared images. To develop the algorithm, images of 40 maize plants were taken on different days after emergency. The plants were grown in pots, and 25 of them were infested with lesser cornstalk borer larvae and 15 were left healthy. The algorithm had three stages: leaf identification, image block classification, and plant classification. In the leaf identification stage, the plant leaves were segmented by thresholding the normalised difference vegetation index image. For the block classification stage, different neural network architectures and block sizes were tested for identification of non-attacked and attacked plant image blocks. Then, in the plant classification stage, discriminating functions were used to classify the scene as either a healthy or an attacked plant. The algorithm performance was compared with the performance of four human experts by using the Kappa coefficient of agreement. The largest size of image block, 9 by 9 pixels, was chosen because of its less computational exigency and because its performance was not significantly different from the other tested block sizes. The algorithm performance was significantly better than just one human expert. The Kappa coefficients for the algorithm and the three best human experts were 63.0 and 49.7%, respectively. The overall accuracy of the algorithm and the best three human experts was 81.6 and 73.4%, respectively. (c) 2005 Silsoe Research Institute. All rights reserved Published by Elsevier Ltd. MenosThe lesser cornstalk borer (Elasmopalpus lignosellus) is a pest that damages the maize plants in the initial growing phase causing stand reduction that can result in yield decrease. The machine vision system could be an alternative for the development of site-specific management of this pest. The objective of this work was to develop and evaluate a machine vision algorithm for identifying maize plants attacked by lesser cornstalk borer based on colour infrared images. To develop the algorithm, images of 40 maize plants were taken on different days after emergency. The plants were grown in pots, and 25 of them were infested with lesser cornstalk borer larvae and 15 were left healthy. The algorithm had three stages: leaf identification, image block classification, and plant classification. In the leaf identification stage, the plant leaves were segmented by thresholding the normalised difference vegetation index image. For the block classification stage, different neural network architectures and block sizes were tested for identification of non-attacked and attacked plant image blocks. Then, in the plant classification stage, discriminating functions were used to classify the scene as either a healthy or an attacked plant. The algorithm performance was compared with the performance of four human experts by using the Kappa coefficient of agreement. The largest size of image block, 9 by 9 pixels, was chosen because of its less computational exigency and because its performance ... Mostrar Tudo |
|
Thesagro: |
Milho; Praga de planta; Zea mays. |
|
Categoria do assunto: |
-- |
|
Marc: |
LEADER 02633naa a2200229 a 4500 001 1489194 005 2018-05-28 008 2005 bl uuuu u00u1 u #d 024 7 $a10.1016/j.biosystemseng.2005.05.002$2DOI 100 1 $aZANDONADI, R. S. 245 $aIdentification of lesser cornstalk borer-attacked maize plants using infrared images.$h[electronic resource] 260 $c2005 520 $aThe lesser cornstalk borer (Elasmopalpus lignosellus) is a pest that damages the maize plants in the initial growing phase causing stand reduction that can result in yield decrease. The machine vision system could be an alternative for the development of site-specific management of this pest. The objective of this work was to develop and evaluate a machine vision algorithm for identifying maize plants attacked by lesser cornstalk borer based on colour infrared images. To develop the algorithm, images of 40 maize plants were taken on different days after emergency. The plants were grown in pots, and 25 of them were infested with lesser cornstalk borer larvae and 15 were left healthy. The algorithm had three stages: leaf identification, image block classification, and plant classification. In the leaf identification stage, the plant leaves were segmented by thresholding the normalised difference vegetation index image. For the block classification stage, different neural network architectures and block sizes were tested for identification of non-attacked and attacked plant image blocks. Then, in the plant classification stage, discriminating functions were used to classify the scene as either a healthy or an attacked plant. The algorithm performance was compared with the performance of four human experts by using the Kappa coefficient of agreement. The largest size of image block, 9 by 9 pixels, was chosen because of its less computational exigency and because its performance was not significantly different from the other tested block sizes. The algorithm performance was significantly better than just one human expert. The Kappa coefficients for the algorithm and the three best human experts were 63.0 and 49.7%, respectively. The overall accuracy of the algorithm and the best three human experts was 81.6 and 73.4%, respectively. (c) 2005 Silsoe Research Institute. All rights reserved Published by Elsevier Ltd. 650 $aMilho 650 $aPraga de planta 650 $aZea mays 700 1 $aPINTO, F. A. C. 700 1 $aSENA JUNIOR, D. G 700 1 $aQUEIROZ, D. M. 700 1 $aVIANA, P. A. 700 1 $aMANTOVANI, E. C. 773 $tBiosystems Engineering, London$gv. 91, n. 4, p. 433-439, 2005.
Download
Esconder MarcMostrar Marc Completo |
|
Registro original: |
Embrapa Milho e Sorgo (CNPMS) |
|
|
Biblioteca |
ID |
Origem |
Tipo/Formato |
Classificação |
Cutter |
Registro |
Volume |
Status |
URL |
Voltar
|
|
|
| Registros recuperados : 20 | |
| 7. |  | VOLL, E.; FILHO VICTÓRIA, R.; CORBIN, F. T.; WORSHAM, A. D. Absorção, Acúmulo e Metabolização de 14C-Linuron. Pesquisa Agropecuária Brasileira, Brasília, V. 25, n.6, p. 801-813, jun. 1990| Biblioteca(s): Embrapa Unidades Centrais. |
|   |
| 8. |  | BUSTILLO, V.; VICTORIA, R. L.; MOURA, J. M. S. de; VICTORIA, D. de C.; COLICCHIO, E. Biogeochemistry of carbon in the Amazonian Floodplains over a 2000-km reach: insights from a process-based model. Earth Interactions, Washington, v. 15, n. 4, p. 1-29, 2011.| Tipo: Artigo em Periódico Indexado | Circulação/Nível: A - 1 |
| Biblioteca(s): Embrapa Territorial. |
|    |
| 9. |  | CABALLERO, S. S. U.; LIBARDI, P. L.; REICHARDT, K.; MORAES, S. O.; VICTORIA, R. L. Lixiviacao do nitrogenio proveniente do solo e do fertilizante (15NH4) 2SO4 durante o ciclo de uma cultura de feijao. Pesquisa Agropecuaria Brasileira, Brasilia, v.21, n.1, p.25-31, jan. 1986.| Biblioteca(s): Embrapa Unidades Centrais. |
|   |
| 10. |  | FEITOSA, J. R. P.; SÁ, T. D. de A.; SOMMER, R.; VICTORIA, R. L. Seasonal variation of (18) O, deuterium and nutrients in water from wells, stream, and rainwater in eastern Amazonia. In: GERMAN-BRAZILIAN WORKSHOP ON NEOTROPICAL ECOSYSTEMS - ARCHIEVEMENTS AND PROSPECTS OF COOPERATIVE RESEARCH, 2000, Hamburg. Proceedings. Geesthacht: GKSS, 2002. p. 303. Editado por Reinhard Lieberei, Helmut Bianchi, Vera Boehm, Christoph Reisdorff. Anexo 1 CD-ROM nº 0084, completo. Publicado também em GERMAN-BRAZILIAN WORKSHOP ON NEOTROPICAL ECOSYSTEMS: ACHIEMENTS AND PROPECTS OF COOPERATIVE RESEARCH,...| Biblioteca(s): Embrapa Amazônia Oriental. |
|    |
| 11. |  | CABALLERO, S. U.; LIBARDI, P. L.; REICHARDT, K.; MATSUI, E.; VICTORIA, R. L. Utilizacao do fertilizante nitrogenado aplicado a uma cultura de feijao. Pesquisa Agropecuaria Brasileira, Brasilia, v.20, n.9, p.1031-1040, set. 1985.| Biblioteca(s): Embrapa Unidades Centrais. |
|   |
| 13. |  | CALVACHE U, M.; LIBARDI, P. L.; REICHARDT, K.; VICTÓRIA, R.; SILVA, J. C. A.; URQUIAGA C, S. Absorção e redistribuição do nitrogênio proveniente do fertilizante, CO(15NH2)2, por dois híbridos de milho. Pesquisa Agropecuária Brasileira, Brasília, v.17, n.11, p.1547-1557, nov. 1982. Título em inglês: Absorption and redistrivution of fertilizer nitrogen, CO(15NH2) 2, by two corn hybrids.| Biblioteca(s): Embrapa Unidades Centrais. |
|    |
| 14. |  | BUSTILLO, V.; VICTORIA, R. L.; MOURA, J. M. S. de; VICTORIA, D. de C.; TOLEDO, A. M. A.; COLLICCHIO, E. Biogeochemistry of the Amazonian floodplains insights from six end member mixing models. Earth Interactions, Washington, v. 14, n. 9, p. 1-83, 2010.| Tipo: Artigo em Periódico Indexado | Circulação/Nível: A - 1 |
| Biblioteca(s): Embrapa Territorial. |
|    |
| 15. |  | BUSTILLO, V.; VICTORIA, R. L.; MOURA, J. M. S. DE; VICTORIA, D. de C.; TOLEDO, A. M. A.; COLLICHIO, E. Factors driving the biogeochemical budget of the Amazon River and its statistical modelling. Comptes Rendus Geoscience, v. 343, n. 4, p. 261-277, 2011.| Tipo: Artigo em Periódico Indexado | Circulação/Nível: B - 1 |
| Biblioteca(s): Embrapa Territorial. |
|    |
| 17. |  | SILVEIRA, A. M.; VICTORIA, R. L.; BALLESTER, M. V.; CAMARGO, P. B. de; MARTINELLI, L. A.; PICCOLO, M. de C. Simulação dos efeitos das mudanças do uso da terra na dinâmica de carbono no solo na bacia do rio Piracicaba. Pesquisa Agropecuária Brasileira, Brasília, DF, v. 35, n. 2, p. 389-399, fev. 2000 Título em inglês: Simulation of the effects of land use changes in soil carbon dynamics in the Piracicaba river basin, São Paulo State Brazil.| Biblioteca(s): Embrapa Unidades Centrais. |
|    |
| 18. |  | NOGUEIRA, S. F.; RAVAGNANI, E. de C.; PAULA, A. M. de; PEREIRA, B. F. F.; MONTES, R. C.; VICTORIA, R, L. Dinâmica de carbono em um solo cultivado com capim-Bermuda Tifton 85 e irrigado com esgoto tratado. In: CONGRESSO BRASILEIRO DE CIÊNCIA DO SOLO, 32., 2009, Fortaleza. Fortaleza: UFC: SBCS, 2009. 5 p. 1 CD-ROM.| Tipo: Artigo em Anais de Congresso |
| Biblioteca(s): Embrapa Territorial. |
|    |
| 19. |  | SCHULER, M. A. E.; MORAES, J. M. de; DUNNE, T.; FIGUEIREDO, R. de O.; MARKEWITZ, D.; DAVIDSON, E. A.; VICTORIA, R. L. Hydrological processes in small forest and pasture catchments of the eastern amazônia. In: CONFERÊNCIA CIENTÍFICA DO LBA, 3., 2004, Brasília, DF. Anais de trabalhos completos. Brasília, DF: LBA, 2004. Plenária 6. Resumo 20.2.| Tipo: Resumo em Anais de Congresso |
| Biblioteca(s): Embrapa Amazônia Oriental. |
|    |
| 20. |  | MILNE, E.; BANWART, S. A.; NOELLEMEYER, E.; ABSON, D. J.; BALLABIO, C.; BAMPA, F.; BATIONO, A.; BATJES, N. H.; BERNOUX, M.; BHATTACHARYYA, T.; BLACK, H.; BUSCHIAZZO, D. E.; CAI, Z.; CERRI, C. E.; KUN, C.; COMPAGNONE, C.; CONANT, R.; COUTINHO, H. L. C.; BROGNIEZ, D. de; BALIEIRO, F. de C.; DUFFY, C.; FELLER, C.; FIDALGO, E. C. C.; SILVA, C. F. da; FUNK, R.; GAUDIG, G.; GICHERU, P. T.; GOLDHABER, M.; GOTTSCHALK, P.; GOULET, F.; GOVERSE, T.; GRATHWOHL, P.; JOOSTEN, H.; KAMONI, P. T.; KIHARA, J.; KRAWCZYNSKI, R.; SCALA JUNIOR, N. la; LEMANCEAU, P.; LI, L.; LI, Z.; LUGATO, E.; MARON, P. A.; MARTIUS, C.; MELILLO, J.; MONTANARELLA, L.; NIKOLAIDIS, N.; NZIGUHEBA, G.; PAN, G.; PASCUAL, U.; PAUSTIAN, K.; PIÑEIRO, G.; POWLSON, D.; QUIROGA, A.; RICHTER, D.; SIGWALT, A.; SIX, J.; SMITH, J.; SMITH, P.; STOCKING, M.; TANNEBERGER, F.; TERMANSEN, M.; NOORDWIJK, M. van; WESEMAEL, B. van; VARGAS, R.; VICTORIA, R. L.; WASWA, B.; WERNER, D.; WICHMANN, S.; WICHTMANN, W.; ZHANG, X.; ZHAO, Y.; ZHENG, J.; ZHENG, J. Soil carbon, multiple benefits. Environmental Development, v. 13, p. 33-38, Jan. 2015.| Tipo: Artigo em Periódico Indexado | Circulação/Nível: B - 1 |
| Biblioteca(s): Embrapa Solos. |
|    |
| Registros recuperados : 20 | |
|
| Expressão de busca inválida. Verifique!!! |
|
|