| |
|
|
 | Acesso ao texto completo restrito à biblioteca da Embrapa Agricultura Digital. Para informações adicionais entre em contato com cnptia.biblioteca@embrapa.br. |
|
Registro Completo |
|
Biblioteca(s): |
Embrapa Agricultura Digital. |
|
Data corrente: |
07/08/2025 |
|
Data da última atualização: |
07/08/2025 |
|
Autoria: |
TOMÀS, J. C.; FARIA, F. A.; ESQUERDO, J. C. D. M.; COUTINHO, A. C.; MEDEIROS, C. B. |
|
Afiliação: |
JORDI CREUS TOMÀS, UNIVERSIDADE ESTADUAL DE CAMPINAS; FABIO AUGUSTO FARIA, UNIVERSIDADE FEDERAL DE SÃO PAULO; JULIO CESAR DALLA MORA ESQUERDO, CNPTIA; ALEXANDRE CAMARGO COUTINHO, CNPTIA; CLAUDIA BAUZER MEDEIROS, UNIVERSIDADE ESTADUAL DE CAMPINAS. |
|
Título: |
SiRCub: a novel approach to recognize agricultural crops using supervised classification. |
|
Ano de publicação: |
2019 |
|
Fonte/Imprenta: |
In: INFORMATION RESOURCES MANAGEMENT ASSOCIATION (ed.). Environmental information systems: concepts, methodologies, tools, and applications. Hershey: IGI Global, 2019. v. II, chap. 50, p. 1129-1147. |
|
DOI: |
10.4018/978-1-5225-7033-2.ch050. |
|
Idioma: |
Inglês |
|
Conteúdo: |
This paper presents a new approach to deal with agricultural crop recognition using SVM (Support Vector Machine), applied to time series of NDVI images. The presented method can be divided into two steps. First, the Timesat software package is used to extract a set of crop features from the NDVI time series. These features serve as descriptors that characterize each NDVI vegetation curve, i.e., the period comprised between sowing and harvesting dates. Then, it is used an SVM to learn the patterns that define each type of crop, and create a crop model that allows classifying new series. The authors present a set of experiments that show the effectiveness of this technique. They evaluated their algorithm with a collection of more than 3000 time series from the Brazilian State of Mato Grosso spanning 4 years (2009-2013). Such time series were annotated in the field by specialists from Embrapa (Brazilian Agricultural Research Corporation). This methodology is generic, and can be adapted to distinct regions and crop profiles. |
|
Palavras-Chave: |
Aprendizado de máquina; Crop classification; Enhanced Vegetation Index; Índice de vegetação; LULC; Machine Learning; Séries temporais; SIRCub; Support Vector Machine. |
|
Thesagro: |
Sensoriamento Remoto; Uso da Terra. |
|
Thesaurus Nal: |
Artificial intelligence; Land cover; Land use; Normalized difference vegetation index; Remote sensing; Time series analysis; Vegetation index. |
|
Categoria do assunto: |
X Pesquisa, Tecnologia e Engenharia |
|
Marc: |
LEADER 02377naa a2200397 a 4500 001 2177764 005 2025-08-07 008 2019 bl uuuu u00u1 u #d 024 7 $a10.4018/978-1-5225-7033-2.ch050.$2DOI 100 1 $aTOMÀS, J. C. 245 $aSiRCub$ba novel approach to recognize agricultural crops using supervised classification.$h[electronic resource] 260 $c2019 520 $aThis paper presents a new approach to deal with agricultural crop recognition using SVM (Support Vector Machine), applied to time series of NDVI images. The presented method can be divided into two steps. First, the Timesat software package is used to extract a set of crop features from the NDVI time series. These features serve as descriptors that characterize each NDVI vegetation curve, i.e., the period comprised between sowing and harvesting dates. Then, it is used an SVM to learn the patterns that define each type of crop, and create a crop model that allows classifying new series. The authors present a set of experiments that show the effectiveness of this technique. They evaluated their algorithm with a collection of more than 3000 time series from the Brazilian State of Mato Grosso spanning 4 years (2009-2013). Such time series were annotated in the field by specialists from Embrapa (Brazilian Agricultural Research Corporation). This methodology is generic, and can be adapted to distinct regions and crop profiles. 650 $aArtificial intelligence 650 $aLand cover 650 $aLand use 650 $aNormalized difference vegetation index 650 $aRemote sensing 650 $aTime series analysis 650 $aVegetation index 650 $aSensoriamento Remoto 650 $aUso da Terra 653 $aAprendizado de máquina 653 $aCrop classification 653 $aEnhanced Vegetation Index 653 $aÍndice de vegetação 653 $aLULC 653 $aMachine Learning 653 $aSéries temporais 653 $aSIRCub 653 $aSupport Vector Machine 700 1 $aFARIA, F. A. 700 1 $aESQUERDO, J. C. D. M. 700 1 $aCOUTINHO, A. C. 700 1 $aMEDEIROS, C. B. 773 $tIn: INFORMATION RESOURCES MANAGEMENT ASSOCIATION (ed.). Environmental information systems: concepts, methodologies, tools, and applications. Hershey: IGI Global, 2019.$gv. II, chap. 50, p. 1129-1147.
Download
Esconder MarcMostrar Marc Completo |
|
Registro original: |
Embrapa Agricultura Digital (CNPTIA) |
|
|
Biblioteca |
ID |
Origem |
Tipo/Formato |
Classificação |
Cutter |
Registro |
Volume |
Status |
URL |
Voltar
|
|
|
| Registros recuperados : 1 | |
| 1. |  | ALVES, B. R. C.; CARDOSO, R. C.; DOAN, R.; Gary L. Williams; DINDOT, S. V.; AMSTALDEN, M. Nutritional Programming of Accelerated Puberty in Heifers: Alterations in DNA Methylation in the Arcuate Nucleus. In: ANNUAL MEETING OF THE SOCIETY FOR THE STUDY OF REPRODUCTION, 48., 2015, San Juan, Puerto Rico, USA. Evolution of sex: abstracts. San Juan: SSR, 2015. p. 117| Tipo: Resumo em Anais de Congresso |
| Biblioteca(s): Embrapa Gado de Leite. |
|    |
| Registros recuperados : 1 | |
|
| Nenhum registro encontrado para a expressão de busca informada. |
|
|