|
|
 | Acesso ao texto completo restrito à biblioteca da Embrapa Café. Para informações adicionais entre em contato com biblioteca@embrapa.br. |
Registro Completo |
Biblioteca(s): |
Embrapa Café. |
Data corrente: |
03/01/2025 |
Data da última atualização: |
03/01/2025 |
Tipo da produção científica: |
Artigo em Periódico Indexado |
Autoria: |
BOELL, M. G.; ALVES, H. M. R.; VOLPATO, M. M. L.; FERREIRA, D. D.; LACERDA, W. S. |
Afiliação: |
MILLER G. BOELL, UNIVERSIDADE FEDERAL DE LAVRAS; HELENA MARIA RAMOS ALVES, CNPCA; MARGARETE MARIN LORDELO VOLPATO, EMPRESA DE PESQUISA AGROPECUÁRIA DE MINAS GERAIS; DANTON DIEGO FERREIRA, UNIVERSIDADE FEDERAL DE LAVRA; WILIAN SOARES LACERDA, UNIVERSIDADE FEDERAL DE LAVRAS. |
Título: |
Exploiting feature extraction techniques for remote sensing image classification. |
Ano de publicação: |
2018 |
Fonte/Imprenta: |
IEEE Latin America Transactions, v. 16, n. 10, out., p. 2657-2664, 2018. |
Idioma: |
Inglês |
Conteúdo: |
Abstract—Multispectral image classification derived from satellite sensors is a topic of graet interest for the scientific community. The great interest is to automatically identify different areas including coffee production. The coffee stands out for being an important source of income and jobs, as well as being one of the most important products of the economy of Brazil. However, automatically map this culture has been a challenge so much for object-oriented analysis how much to methods based on “pixel to pixel” techniques. This work exploits different feature extraction techniques aiming at identifying the most discriminative features for remote image classification. The satellite image used in this study refers to the Três Pontas region, Minas Gerais, Brazil, which has a great agricultural production, especially coffee. It has been used the seven spectral image bands of Landsat 8 OLI (Operational Land Imager). It was considered 5 land use classes: Coffee, Wood, Water, Urban Area, Other Uses (Grassland, Soil, Weathered, Other Cultures, Eucalyptus). Various spectral and textural characteristics were extracted as features and combined for the classification. Higher-order statistics-based features were also extracted and combined with those commonly used in the literature for remote sensing image classification. Two feature selection methods for dimention redution was used: the Fisher’s Discriminant Ratio (FDR) and the linear correlation. As classifier, a multilayer perceptron has been used. The best Kappa indices obtained was 73.13% for the model that considered all extracted features (a total of 43) as input. MenosAbstract—Multispectral image classification derived from satellite sensors is a topic of graet interest for the scientific community. The great interest is to automatically identify different areas including coffee production. The coffee stands out for being an important source of income and jobs, as well as being one of the most important products of the economy of Brazil. However, automatically map this culture has been a challenge so much for object-oriented analysis how much to methods based on “pixel to pixel” techniques. This work exploits different feature extraction techniques aiming at identifying the most discriminative features for remote image classification. The satellite image used in this study refers to the Três Pontas region, Minas Gerais, Brazil, which has a great agricultural production, especially coffee. It has been used the seven spectral image bands of Landsat 8 OLI (Operational Land Imager). It was considered 5 land use classes: Coffee, Wood, Water, Urban Area, Other Uses (Grassland, Soil, Weathered, Other Cultures, Eucalyptus). Various spectral and textural characteristics were extracted as features and combined for the classification. Higher-order statistics-based features were also extracted and combined with those commonly used in the literature for remote sensing image classification. Two feature selection methods for dimention redution was used: the Fisher’s Discriminant Ratio (FDR) and the linear correlation. As classifier, a multilayer percept... Mostrar Tudo |
Thesaurus Nal: |
Neural networks; Remote sensing. |
Categoria do assunto: |
-- |
Marc: |
LEADER 02239naa a2200193 a 4500 001 2171165 005 2025-01-03 008 2018 bl uuuu u00u1 u #d 100 1 $aBOELL, M. G. 245 $aExploiting feature extraction techniques for remote sensing image classification.$h[electronic resource] 260 $c2018 520 $aAbstract—Multispectral image classification derived from satellite sensors is a topic of graet interest for the scientific community. The great interest is to automatically identify different areas including coffee production. The coffee stands out for being an important source of income and jobs, as well as being one of the most important products of the economy of Brazil. However, automatically map this culture has been a challenge so much for object-oriented analysis how much to methods based on “pixel to pixel” techniques. This work exploits different feature extraction techniques aiming at identifying the most discriminative features for remote image classification. The satellite image used in this study refers to the Três Pontas region, Minas Gerais, Brazil, which has a great agricultural production, especially coffee. It has been used the seven spectral image bands of Landsat 8 OLI (Operational Land Imager). It was considered 5 land use classes: Coffee, Wood, Water, Urban Area, Other Uses (Grassland, Soil, Weathered, Other Cultures, Eucalyptus). Various spectral and textural characteristics were extracted as features and combined for the classification. Higher-order statistics-based features were also extracted and combined with those commonly used in the literature for remote sensing image classification. Two feature selection methods for dimention redution was used: the Fisher’s Discriminant Ratio (FDR) and the linear correlation. As classifier, a multilayer perceptron has been used. The best Kappa indices obtained was 73.13% for the model that considered all extracted features (a total of 43) as input. 650 $aNeural networks 650 $aRemote sensing 700 1 $aALVES, H. M. R. 700 1 $aVOLPATO, M. M. L. 700 1 $aFERREIRA, D. D. 700 1 $aLACERDA, W. S. 773 $tIEEE Latin America Transactions$gv. 16, n. 10, out., p. 2657-2664, 2018.
Download
Esconder MarcMostrar Marc Completo |
Registro original: |
Embrapa Café (CNPCa) |
|
Biblioteca |
ID |
Origem |
Tipo/Formato |
Classificação |
Cutter |
Registro |
Volume |
Status |
URL |
Voltar
|
|
Registros recuperados : 51 | |
3. |  | SILVA, G. T. S. T. da; CARVALHO, K. T.; LOPES, O. F.; OLIVEIRA, C. R. de. Photocatalytic degradation of organic compounds over g-C3N4/Nb2O5 heterostructures. In: INTERNATIONAL CONGRESS ON CERAMICS, 7., CONGRESSO BRASILEIRO DE CERÂMICA, 62., 2018, Foz do Iguaçu. Resumos... Foz do Iguaçu: Metallum, 2018. p. 379.Tipo: Resumo em Anais de Congresso |
Biblioteca(s): Embrapa Instrumentação. |
|    |
5. |  | MENDONÇA, V. R.; LOPES, O. F.; NOGUEIRA, A. E.; SILVA, G. T. S. T.; RIBEIRO, C. Challenges of synthesis and environmental applications of metal-free nano-heterojunctions. In: INAMUDDIN, G. S.; KUMAR, A.; LICHITFOUSE, E.; ASIRI, A. M. (Eds.). Nanophotocatalysis and Environmental Applications: Spinger, Cham, 2019. 108-130 Chapter 4Tipo: Capítulo em Livro Técnico-Científico |
Biblioteca(s): Embrapa Instrumentação. |
|    |
11. |  | TORRES, J. A.; NOGUEIRA, A. E.; SILVA, G. T. S. T.; OLIVEIRA, C. R. de. Redução fotocatalítica de CO2: influência do caráter básico do MgO. In: WORKSHOP DA REDE DE NANOTECNOLOGIA APLICADA AO AGRONEGÓCIO, 9., 2017, São Carlos. Anais ... São Carlos: Embrapa Instrumentação, 2017. p.414-417. Editores: Caue Ribeiro de Oliveira, Elaine Cristina Paris, Luiz Henrique Capparelli Mattoso, Marcelo Porto Bemquerer, Maria Alice Martins, Odílio Benedito Garrido de Assis.Tipo: Artigo em Anais de Congresso |
Biblioteca(s): Embrapa Instrumentação. |
|    |
13. |  | SILVA, G. T. S. T.; CARVALHO, K. T. G.; LOPES, O. F.; OLIVEIRA, C. R. de. Síntese sonoquímica de heteroestruturas g-C3N4/Nb2O5: avaliação da perfomance fotocatalítica para degradação de poluentes orgânicos. In: WORKSHOP DA REDE DE NANOTECNOLOGIA APLICADA AO AGRONEGÓCIO, 9., 2017, São Carlos. Anais ... São Carlos: Embrapa Instrumentação, 2017. p.487-490. Editores: Caue Ribeiro de Oliveira, Elaine Cristina Paris, Luiz Henrique Capparelli Mattoso, Marcelo Porto Bemquerer, Maria Alice Martins, Odílio Benedito Garrido de Assis.Tipo: Artigo em Anais de Congresso |
Biblioteca(s): Embrapa Instrumentação. |
|    |
16. |  | BOLFE, E. L.; PENA JUNIOR, M. A. G.; CONTINI, E.; D'OLIVEIRA, F. M.; SILVA, G. T. S. da. Base de dados da agropecuária brasileira: planejamento estratégico e desenvolvimento. Brazilian Journal of Development, Curitiba, v. 5, n. 1, p. 201-214, jan. 2019.Tipo: Artigo em Periódico Indexado |
Biblioteca(s): Embrapa Unidades Centrais. |
|    |
17. |  | MENDES, J. O. S.; CARVALHO, K. T. G.; SILVA, G. T. S. T. da; OLIVEIRA, C. R. de. Studies of photocatalytic reduction of carbon dioxide for renewable fuel production using niobium oxide. In: INTERNATIONAL CONGRESS ON CERAMICS, 7., CONGRESSO BRASILEIRO DE CERÂMICA, 62., 2018, Foz do Iguaçu. Resumos... Foz do Iguaçu: Metallum, 2018. p. 381.Tipo: Resumo em Anais de Congresso |
Biblioteca(s): Embrapa Instrumentação. |
|    |
19. |  | NOGUEIRA, A. E.; SILVA, G. T. S. T.; OLIVEIRA, J. A.; TORRES, J. A.; SILVA, M.; CARMO, M.; RIBEIRO, C. Unveiling copper oxide role in CO2 photoreduction process - catalyst or reactant? In: SPRING MEETING OF THE EUROPEAN MATERIALS RESEARCH SOCIETY, 37. 2019, Nice, França, 2019.Tipo: Resumo em Anais de Congresso |
Biblioteca(s): Embrapa Instrumentação. |
|    |
20. |  | CARVALHO JUNIOR, P. S.; DINIZ, L. F.; SILVA, G. T. S. T. da; COUTINHO, N. D.; SANTOS, P. G. dos; CARVALHO-SILVA, V. H.; RIBEIRO, C.; ELLENA, J. Amino - imino tautomerism in the salt formation of Albendazole: Hydrobromide and nitrate salts. Crystal Growth & Design, v. 21, 2021. 1122?1135Tipo: Artigo em Periódico Indexado | Circulação/Nível: A - 1 |
Biblioteca(s): Embrapa Instrumentação. |
|    |
Registros recuperados : 51 | |
|
Nenhum registro encontrado para a expressão de busca informada. |
|
|