|
|
 | Acesso ao texto completo restrito à biblioteca da Embrapa Solos. Para informações adicionais entre em contato com cnps.biblioteca@embrapa.br. |
Registro Completo |
Biblioteca(s): |
Embrapa Solos. |
Data corrente: |
29/11/2023 |
Data da última atualização: |
04/12/2023 |
Tipo da produção científica: |
Orientação de Tese de Pós-Graduação |
Autoria: |
SANTOS, P. A. dos. |
Afiliação: |
PRISCILLA AZEVEDO DOS SANTOS, UNIVERSIDADE FEDERAL RURAL DO RIO DE JANEIRO. |
Título: |
Mapeamento e modelagem digital da variabilidade tridimensional de atributos físico-hídricos dos solos da bacia do rio Guapi-Macacu - RJ, por estatística multivariada e algoritmos. |
Ano de publicação: |
2021 |
Fonte/Imprenta: |
2021. |
Páginas: |
156 f. |
Idioma: |
Português |
Notas: |
Dissertação (Mestrado em Modelagem e Evolução Geológica) - Instituto de Agronomia, Universidade Federal Rural do Rio de Janeiro, Seropédica. Orientadora: Helena Saraiva Koenow Pinheiro, UFRRJ; Coorientador: Waldir de Carvalho Júnior, CNPS. |
Conteúdo: |
O conhecimento acerca dos atributos físico-hídricos dos solos é importante para estudos voltados a compreensão do regime hídrico e monitoramento do fluxo de água, principalmente em bacias hidrográficas, onde o conteúdo de água armazenado e disponibilizado afeta tanto as funções ambientais dos solos, quanto a biodiversidade e a sustentabilidade desse recurso natural. No Brasil, os bancos de dados de solos possuem poucas informações coletadas acerca de parâmetros hídricos dos solos tais como a velocidade de infiltração básica (vib) e a condutividade hidráulica saturada (Ksat), devido à não realização sistemática de testes de infiltração ao se executar os levantamentos pedométricos e a dificuldade de mensuração de tais parâmetros nas camadas mais profundas da pedosfera. Neste contexto, torna-se passível a estimativa da vib e da Ksat associando-se as propriedades granulométricas e físico-químicas dos solos coletadas em campo por meio de algoritmos para pedologia quantitativa (do inglês, Algorithms for Quantitative Pedology - AQP) e implementação de funções de pedotransferência usando análise regressiva multivariada e algoritmos de machine learning baseados em árvores, capazes de modelá-los vertical (em perfil) e espacialmente sob a área de estudo. Ainda, como forma de ampliar as informações sobre a área estudada e garantir uma modelagem mais fidedigna e robusta, é desejável associar parâmetros mensuráveis em campo e laboratório com demais informações relevantes que ajudem a análise de bacias hidrográficas compondo assim as variáveis de entrada nos modelos citados. Este estudo sugere a aplicação de variáveis oriundas de modelagem numérica do terreno, obtidas através de Modelo Digital de Elevação (MDE), e dados radiométricos, derivados aerogeofísica ambiental (aeromagnetometria e aerogamaespectrometria) e análise espectral sob índices relativos à vegetação, solo e água utilizando imagens do sensor Sentinel-2A (índices espectrais) por meio de Sensoriamento Remoto. Para a análise quantitativa dos dados e seleção de covariáveis dos modelos, foram abordados métodos estatístico-descritivo e multivariado, visando o entendimento interrelacional das variáveis preditoras e a redução de dimensionalidades e/ou multicolinearidade nas variáveis de entrada nos modelos. Pelos resultados obtidos, os modelos baseados em árvores (Random Forest – RF e Árvores de Regressão - AR) apresentaram melhor desempenho na modelagem dos atributos físico-hídricos frente ao modelo regressivo na estimativa das funções de pedotrasnferência. A abordagem multivariada usando os métodos de seleção e redução de dimensionalidade permitiram a escolha otimizada das variáveis de entrada na modelagem, eliminação de problemas de multicolinearidade dos dados e redução do conjunto de dados, obtendo diversificada resposta para as camadas de solos avaliadas. O estudo mostra o potencial de integração de dados topográficos, pedológicos e radiométricos e sua contribuição no mapeamento e modelagem digital de solos, visando a compreensão da variabilidade dos atributos físico-hídricos na bacia hidrográfica estudada. MenosO conhecimento acerca dos atributos físico-hídricos dos solos é importante para estudos voltados a compreensão do regime hídrico e monitoramento do fluxo de água, principalmente em bacias hidrográficas, onde o conteúdo de água armazenado e disponibilizado afeta tanto as funções ambientais dos solos, quanto a biodiversidade e a sustentabilidade desse recurso natural. No Brasil, os bancos de dados de solos possuem poucas informações coletadas acerca de parâmetros hídricos dos solos tais como a velocidade de infiltração básica (vib) e a condutividade hidráulica saturada (Ksat), devido à não realização sistemática de testes de infiltração ao se executar os levantamentos pedométricos e a dificuldade de mensuração de tais parâmetros nas camadas mais profundas da pedosfera. Neste contexto, torna-se passível a estimativa da vib e da Ksat associando-se as propriedades granulométricas e físico-químicas dos solos coletadas em campo por meio de algoritmos para pedologia quantitativa (do inglês, Algorithms for Quantitative Pedology - AQP) e implementação de funções de pedotransferência usando análise regressiva multivariada e algoritmos de machine learning baseados em árvores, capazes de modelá-los vertical (em perfil) e espacialmente sob a área de estudo. Ainda, como forma de ampliar as informações sobre a área estudada e garantir uma modelagem mais fidedigna e robusta, é desejável associar parâmetros mensuráveis em campo e laboratório com demais informações relevantes que ajudem a anál... Mostrar Tudo |
Palavras-Chave: |
Aprendizado de máquina; AQP; Digital Mapping; Estatística Multivariada; Geoprocessamento; Hidropedologia; Hydropedology; Machine Learning; Multivariate Statistics. |
Thesagro: |
Sensoriamento Remoto. |
Thesaurus Nal: |
Remote sensing. |
Categoria do assunto: |
P Recursos Naturais, Ciências Ambientais e da Terra |
Marc: |
LEADER 04303nam a2200265 a 4500 001 2158886 005 2023-12-04 008 2021 bl uuuu m 00u1 u #d 100 1 $aSANTOS, P. A. dos 245 $aMapeamento e modelagem digital da variabilidade tridimensional de atributos físico-hídricos dos solos da bacia do rio Guapi-Macacu - RJ, por estatística multivariada e algoritmos.$h[electronic resource] 260 $a2021.$c2021 300 $a156 f. 500 $aDissertação (Mestrado em Modelagem e Evolução Geológica) - Instituto de Agronomia, Universidade Federal Rural do Rio de Janeiro, Seropédica. Orientadora: Helena Saraiva Koenow Pinheiro, UFRRJ; Coorientador: Waldir de Carvalho Júnior, CNPS. 520 $aO conhecimento acerca dos atributos físico-hídricos dos solos é importante para estudos voltados a compreensão do regime hídrico e monitoramento do fluxo de água, principalmente em bacias hidrográficas, onde o conteúdo de água armazenado e disponibilizado afeta tanto as funções ambientais dos solos, quanto a biodiversidade e a sustentabilidade desse recurso natural. No Brasil, os bancos de dados de solos possuem poucas informações coletadas acerca de parâmetros hídricos dos solos tais como a velocidade de infiltração básica (vib) e a condutividade hidráulica saturada (Ksat), devido à não realização sistemática de testes de infiltração ao se executar os levantamentos pedométricos e a dificuldade de mensuração de tais parâmetros nas camadas mais profundas da pedosfera. Neste contexto, torna-se passível a estimativa da vib e da Ksat associando-se as propriedades granulométricas e físico-químicas dos solos coletadas em campo por meio de algoritmos para pedologia quantitativa (do inglês, Algorithms for Quantitative Pedology - AQP) e implementação de funções de pedotransferência usando análise regressiva multivariada e algoritmos de machine learning baseados em árvores, capazes de modelá-los vertical (em perfil) e espacialmente sob a área de estudo. Ainda, como forma de ampliar as informações sobre a área estudada e garantir uma modelagem mais fidedigna e robusta, é desejável associar parâmetros mensuráveis em campo e laboratório com demais informações relevantes que ajudem a análise de bacias hidrográficas compondo assim as variáveis de entrada nos modelos citados. Este estudo sugere a aplicação de variáveis oriundas de modelagem numérica do terreno, obtidas através de Modelo Digital de Elevação (MDE), e dados radiométricos, derivados aerogeofísica ambiental (aeromagnetometria e aerogamaespectrometria) e análise espectral sob índices relativos à vegetação, solo e água utilizando imagens do sensor Sentinel-2A (índices espectrais) por meio de Sensoriamento Remoto. Para a análise quantitativa dos dados e seleção de covariáveis dos modelos, foram abordados métodos estatístico-descritivo e multivariado, visando o entendimento interrelacional das variáveis preditoras e a redução de dimensionalidades e/ou multicolinearidade nas variáveis de entrada nos modelos. Pelos resultados obtidos, os modelos baseados em árvores (Random Forest – RF e Árvores de Regressão - AR) apresentaram melhor desempenho na modelagem dos atributos físico-hídricos frente ao modelo regressivo na estimativa das funções de pedotrasnferência. A abordagem multivariada usando os métodos de seleção e redução de dimensionalidade permitiram a escolha otimizada das variáveis de entrada na modelagem, eliminação de problemas de multicolinearidade dos dados e redução do conjunto de dados, obtendo diversificada resposta para as camadas de solos avaliadas. O estudo mostra o potencial de integração de dados topográficos, pedológicos e radiométricos e sua contribuição no mapeamento e modelagem digital de solos, visando a compreensão da variabilidade dos atributos físico-hídricos na bacia hidrográfica estudada. 650 $aRemote sensing 650 $aSensoriamento Remoto 653 $aAprendizado de máquina 653 $aAQP 653 $aDigital Mapping 653 $aEstatística Multivariada 653 $aGeoprocessamento 653 $aHidropedologia 653 $aHydropedology 653 $aMachine Learning 653 $aMultivariate Statistics
Download
Esconder MarcMostrar Marc Completo |
Registro original: |
Embrapa Solos (CNPS) |
|
Biblioteca |
ID |
Origem |
Tipo/Formato |
Classificação |
Cutter |
Registro |
Volume |
Status |
URL |
Voltar
|
|
Registros recuperados : 1 | |
Registros recuperados : 1 | |
|
Nenhum registro encontrado para a expressão de busca informada. |
|
|