|
|
 | Acesso ao texto completo restrito à biblioteca da Embrapa Pecuária Sudeste. Para informações adicionais entre em contato com cppse.biblioteca@embrapa.br. |
Registro Completo |
Biblioteca(s): |
Embrapa Pecuária Sudeste. |
Data corrente: |
03/05/2023 |
Data da última atualização: |
08/11/2023 |
Tipo da produção científica: |
Artigo em Periódico Indexado |
Autoria: |
BIELUCZYK, W.; PICCOLO, M. DE C.; PEREIRA, M. G.; LAMBAIS, G. R.; GERMON, A.; MORAES, M. T. DE; SOLTANGHEISI, A.; CAMARGO, P. B. DE; BOSI, C.; BERNARDI, A. C. de C.; PEZZOPANE, J. R. M.; BATISTA, I.; CHERUBIN, M. R. |
Afiliação: |
WANDERLEI BIELUCZYK, University of São Paulo; MARISA DE CÁSSIA PICCOLO, University of São Paulo; MARCOS GERVASIO PEREIRA, Federal Rural University of Rio de Janeiro; GEORGE RODRIGUES LAMBAIS, National Institute of Semiarid; AMANDINE GERMON, University of Copenhagen; MOACIR TUZZIN DE MORAES, University of São Paulo, “Luiz de Queiroz” College of Agriculture; AMIN SOLTANGHEISI, University of Reading; PLÍNIO BARBOSA DE CAMARGO, University of São Paulo; CRISTIAM BOSI, Federal University of Paraná; ALBERTO CARLOS DE CAMPOS BERNARDI, CPPSE; JOSE RICARDO MACEDO PEZZOPANE, CPPSE; ITAYNARA BATISTA, Federal Fluminense University; MAURÍCIO ROBERTO CHERUBIN, University of São Paulo, “Luiz de Queiroz” College of Agriculture. |
Título: |
Fine root dynamics in a tropical integrated crop-livestock-forestry system. |
Ano de publicação: |
2023 |
Fonte/Imprenta: |
Rhizosphere, v. 26, jun. 2023, 100695. |
Páginas: |
17 p. |
DOI: |
https://doi.org/10.1016/j.rhisph.2023.100695 |
Idioma: |
Inglês |
Conteúdo: |
Integrated crop-livestock-forestry (ICLF) systems explore synergistic interactions between soil, plant, and animals, maximizing land-use efficiency and sustainability. However, belowground dynamics under ICLF have not been investigated deeply, particularly the role of incorporating dead root material, a forefront strategy for releasing nutrients and storing carbon. To better understand belowground interactions, we conducted a 21-month assessment of fine-root growth and decomposition in an ICLF system, starting when Eucalyptus urograndis trees were three years old. Eucalyptus rows were spaced 15 m apart and integrated with annual crops and pasture. Distances of 1.9, 4.3, and 7.5 m from the trees were evaluated under two successional periods: (i) annual crop, when corn was interspaced with palisade grass (Urochloa brizantha); and (ii) pasture, when palisade grass was grazed. We used the minirhizotron technique to track fine-root production and decomposition down to a depth of 70 cm, capturing 2400 images. Root longevity was estimated per root diameter class (0-0.5-, 0.5-1.0-, and 1.0?2.0-mm) and phenotypical groups (e.g., grasses [corn + palisade grass] and Eucalyptus). Our data showed that root decomposition rate and necromass inputs into the soil were reduced at the closest distance from the Eucalyptus rows (i.e., 1.9 m). The incorporation of decomposed roots was higher in the topsoil (0?28 cm) and declined with increasing soil depths. The total decomposed root incorporation was 101 m m?2 of soil image for 7.5 and 4.3 m inter-row positions, almost twice as high as the recorded at 1.9 m (54 m m?2) from the trees. Daily root decomposition rates increased during the last rainy season, benefited from numerous dead corn roots, and facilitated by higher soil moisture and temperature. Grasses and Eucalyptus roots at 7.5 m from the tree rows had shorter longevity than those at 1.9 m, remaining 88 and 152 days less, respectively. Root diameter influenced the decomposition rate as thicker roots (diameter between 1.0 and 2.0 mm) of grasses and Eucalyptus stood in the soil for 243 and 261 days longer than the finest roots (diameter <0.5 mm). Our results highlight that root necromass accretion and decomposition are heterogeneous in ICLF systems. Furthermore, 3-to-5-year-old Eucalyptus trees drive the interactions, creating microclimate conditions that impair corn and palisade grass root production and reduce root turnover close to the trees. These findings provide a scientific base for managing the ICLF system (spatial and temporal arrangements) and developing models of soil carbon addition via roots in such complex and heterogeneous systems. MenosIntegrated crop-livestock-forestry (ICLF) systems explore synergistic interactions between soil, plant, and animals, maximizing land-use efficiency and sustainability. However, belowground dynamics under ICLF have not been investigated deeply, particularly the role of incorporating dead root material, a forefront strategy for releasing nutrients and storing carbon. To better understand belowground interactions, we conducted a 21-month assessment of fine-root growth and decomposition in an ICLF system, starting when Eucalyptus urograndis trees were three years old. Eucalyptus rows were spaced 15 m apart and integrated with annual crops and pasture. Distances of 1.9, 4.3, and 7.5 m from the trees were evaluated under two successional periods: (i) annual crop, when corn was interspaced with palisade grass (Urochloa brizantha); and (ii) pasture, when palisade grass was grazed. We used the minirhizotron technique to track fine-root production and decomposition down to a depth of 70 cm, capturing 2400 images. Root longevity was estimated per root diameter class (0-0.5-, 0.5-1.0-, and 1.0?2.0-mm) and phenotypical groups (e.g., grasses [corn + palisade grass] and Eucalyptus). Our data showed that root decomposition rate and necromass inputs into the soil were reduced at the closest distance from the Eucalyptus rows (i.e., 1.9 m). The incorporation of decomposed roots was higher in the topsoil (0?28 cm) and declined with increasing soil depths. The total decomposed root incorporation... Mostrar Tudo |
Palavras-Chave: |
ILPF; Minirhizotron; Palisade grass; Root diameter; Root turnover. |
Thesaurus Nal: |
Alley cropping; Carbon; Eucalyptus. |
Categoria do assunto: |
X Pesquisa, Tecnologia e Engenharia |
Marc: |
null Download
Esconder MarcMostrar Marc Completo |
Registro original: |
Embrapa Pecuária Sudeste (CPPSE) |
|
Biblioteca |
ID |
Origem |
Tipo/Formato |
Classificação |
Cutter |
Registro |
Volume |
Status |
URL |
Voltar
|
|
Registros recuperados : 2 | |
2. |  | LIMA, G. J. M. M. de; CATUNDA, F.; CLOSE, W.; AJALA, L. C.; RUTZ, F. Combination of organic and inorganic trace minerals for sows and weaned pigs. In: AMERICAN DAIRY SCIENCE ASSOCIATION; AMERICAN SOCIETY OF ANIMAL SCIENCE, 2008, Indianapolis. Abstracts. Indianapolis: ADSA: ASAS, 2008. p. 174 Projeto/Plano de Ação: 10.03.21.014-02. Publicado no Journal of Animal Science, v.86, p. 174, 2008. E-Suplemento 2.Tipo: Resumo em Anais de Congresso |
Biblioteca(s): Embrapa Suínos e Aves. |
|   |
Registros recuperados : 2 | |
|
Nenhum registro encontrado para a expressão de busca informada. |
|
|