|
|
 | Acesso ao texto completo restrito à biblioteca da Embrapa Semiárido. Para informações adicionais entre em contato com cpatsa.biblioteca@embrapa.br. |
Registro Completo |
Biblioteca(s): |
Embrapa Semiárido. |
Data corrente: |
08/04/2021 |
Data da última atualização: |
08/04/2021 |
Tipo da produção científica: |
Artigo em Periódico Indexado |
Autoria: |
MOGOLLON, M. R.; CONTRERAS, C.; FREITAS, S. T. de; ZOFFOLI, J. P. |
Afiliação: |
MIGUEL RENE MOGOLLON; CAROLINA CONTRERAS; SERGIO TONETTO DE FREITAS, CPATSA; JUAN PABLO ZOFFOLI. |
Título: |
NIR spectral models for early detection of bitter pit in asymptomatic Fuji apples. |
Ano de publicação: |
2021 |
Fonte/Imprenta: |
Scientia Horticulturae, v. 280, jan. 2021. |
Idioma: |
Inglês |
Conteúdo: |
Bitter pit (BP) is a physiological disorder that develops in apples, mainly during storage. This study sought to develop NIR spectral models for prediction of future BP incidence and severity in ?Fuji? apples using spectral data collected at harvest and during storage. Partial Least Square classification models obtained from spectra reflectance between 950 and 1200 nm were compared, starting at harvest, at 10 days postharvest and every 20 days thereafter over 110 days at 0 ◦C in relation to BP severity (number of pits per fruit) after 150 days at 0 ◦C. The models used data from a total of 3000 fruit, collected over two seasons (2018 and 2019) from two orchards. All models were evaluated for Accuracy, Sensitivity, Specificity, Positive Predicted Value (PPV) and Negative Predicted Value (NPV). In the validation dataset, Accuracy, Specificity and NPV values varied between 60 and 80 % and were independent of the time of evaluation during storage. Sensitivity and PPV values did not exceed 60 % in the same dataset. Here, BP incidences in fruit with severities of <8 pits per fruit, achieved accuracies and NPVs between 60 and 70 % in the calibration and validation datasets using spectral data collected at harvest. For comparison, the detection of high BP severities (8?9 pits per fruit), these same metrics achieved between 80 and 90 % using spectral data collected during the first 10 days of storage. |
Palavras-Chave: |
Avaliação não destrutiva; Desordem fisiológica; Modelo de classificação; Próximo ao infravermelho. |
Thesagro: |
Distúrbio Fisiológico; Maçã; Pós-Colheita. |
Thesaurus Nal: |
Apples; Bitter pit; Postharvest physiology; Postharvest technology. |
Categoria do assunto: |
-- |
Marc: |
LEADER 02283naa a2200289 a 4500 001 2131128 005 2021-04-08 008 2021 bl uuuu u00u1 u #d 100 1 $aMOGOLLON, M. R. 245 $aNIR spectral models for early detection of bitter pit in asymptomatic Fuji apples.$h[electronic resource] 260 $c2021 520 $aBitter pit (BP) is a physiological disorder that develops in apples, mainly during storage. This study sought to develop NIR spectral models for prediction of future BP incidence and severity in ?Fuji? apples using spectral data collected at harvest and during storage. Partial Least Square classification models obtained from spectra reflectance between 950 and 1200 nm were compared, starting at harvest, at 10 days postharvest and every 20 days thereafter over 110 days at 0 ◦C in relation to BP severity (number of pits per fruit) after 150 days at 0 ◦C. The models used data from a total of 3000 fruit, collected over two seasons (2018 and 2019) from two orchards. All models were evaluated for Accuracy, Sensitivity, Specificity, Positive Predicted Value (PPV) and Negative Predicted Value (NPV). In the validation dataset, Accuracy, Specificity and NPV values varied between 60 and 80 % and were independent of the time of evaluation during storage. Sensitivity and PPV values did not exceed 60 % in the same dataset. Here, BP incidences in fruit with severities of <8 pits per fruit, achieved accuracies and NPVs between 60 and 70 % in the calibration and validation datasets using spectral data collected at harvest. For comparison, the detection of high BP severities (8?9 pits per fruit), these same metrics achieved between 80 and 90 % using spectral data collected during the first 10 days of storage. 650 $aApples 650 $aBitter pit 650 $aPostharvest physiology 650 $aPostharvest technology 650 $aDistúrbio Fisiológico 650 $aMaçã 650 $aPós-Colheita 653 $aAvaliação não destrutiva 653 $aDesordem fisiológica 653 $aModelo de classificação 653 $aPróximo ao infravermelho 700 1 $aCONTRERAS, C. 700 1 $aFREITAS, S. T. de 700 1 $aZOFFOLI, J. P. 773 $tScientia Horticulturae$gv. 280, jan. 2021.
Download
Esconder MarcMostrar Marc Completo |
Registro original: |
Embrapa Semiárido (CPATSA) |
|
Biblioteca |
ID |
Origem |
Tipo/Formato |
Classificação |
Cutter |
Registro |
Volume |
Status |
URL |
Voltar
|
|
Registros recuperados : 2 | |
1. |  | MEDEIROS, R. N.; AMARAL, T. B.; PIRES, P. P.; ESTEVAM, V. V.; MORAES, V. A.; GOIOZO, P. F. I.; COSTARDI, M. L.; TORRES JÚNIOR, R. A. A. Avaliação de um transponder com sensor de temperatura para bovinos. In: JORNADA CIENTÍFICA DA EMBRAPA GADO DE CORTE, 3., 2007, Campo Grande, MS. Anais [da]... Campo Grande, MS: Embrapa Gado de Corte, 2007. p. 34 1 CD-ROM.Tipo: Resumo em Anais de Congresso |
Biblioteca(s): Embrapa Gado de Corte. |
|   |
2. |  | ESTEVAM, V. V.; AMARAL, T. B.; PIRES, P. P.; MEDEIROS, R. N.; MORAES, V. A.; GOIOZO, P. F. I.; COSTARDI, M. L. Fixação do transponder com sensor de temperatura em bovinos pelo método cirúrgico. In: JORNADA CIENTÍFICA DA EMBRAPA GADO DE CORTE, 3., 2007, Campo Grande, MS. Anais [da]... Campo Grande, MS: Embrapa Gado de Corte, 2007. p. 51 1 CD-ROM.Tipo: Resumo em Anais de Congresso |
Biblioteca(s): Embrapa Gado de Corte. |
|   |
Registros recuperados : 2 | |
|
Nenhum registro encontrado para a expressão de busca informada. |
|
|