|
|
 | Acesso ao texto completo restrito à biblioteca da Embrapa Agricultura Digital. Para informações adicionais entre em contato com cnptia.biblioteca@embrapa.br. |
Registro Completo |
Biblioteca(s): |
Embrapa Agricultura Digital. |
Data corrente: |
09/01/2019 |
Data da última atualização: |
21/01/2020 |
Tipo da produção científica: |
Artigo em Anais de Congresso |
Autoria: |
GONÇALVES, R. R. do V.; ZULLO, J.; ROMANI, L. A. S.; AMARAL, B. F. do; SOUSA, E. P. M. |
Afiliação: |
RENATA RIBEIRO DO VALLE GONÇALVES, Unicamp; JURANDIR ZULLO JUNIOR, UNICAMP; LUCIANA ALVIM SANTOS ROMANI, CNPTIA; BRUNO FERRAZ DO AMARAL, USP, São Carlos, SP; ELAINE PARROS MACHADO SOUSA, USP, São Carlos, SP. |
Título: |
Agricultural monitoring using clustering techniques on satellite image time series of low spatial resolution. |
Ano de publicação: |
2017 |
Fonte/Imprenta: |
In: INTERNATIONAL WORKSHOP ON THE ANALYSIS OF MULTITEMPORAL REMOTE SENSING IMAGES, 9., 2017, Brugge. Proceedings... Piscataway: IEEE, 2017. |
Páginas: |
4 p. |
ISBN: |
978-1-5386-3327-4 |
DOI: |
10.1109/Multi-Temp.2017.8035234 |
Idioma: |
Inglês |
Notas: |
MultiTemp 2017. |
Conteúdo: |
Abstract: This paper discuss how to use the clustering analysis to discover and extract useful information from multi-temporal satellite images with low spatial resolution to improve the agricultural monitoring of sugarcane fields. A large database of satellite images and specific software were used to perform the images pre-processing, time series extraction, clustering method applying and data visualization on several steps throughout the analysis process. The pre-processing phase corresponded to an accurate geometric correction, which is a requirement for applications of time series of satellite images such as the agricultural monitoring. Other steps in the analysis process were accomplished by a graphical interface to improve the interaction with the users. Approach validation was done using NDVI images of sugarcane fields because of their economic importance as source of ethanol and as effective alternative to replace fossil fuels and mitigate greenhouse gases emissions. According to the analysis done, the methodology allowed to identify areas with similar agricultural development patterns, also considering different growing seasons for the crops, covering monthly and annual periods. Results confirm that satellite images of low spatial resolution, such as that from the AVHRR/NOAA sensors, can indeed be satisfactorily used to monitor agricultural crops in regional scale. |
Thesaurus Nal: |
Cluster investigation; Time series analysis. |
Categoria do assunto: |
-- |
Marc: |
LEADER 02219nam a2200229 a 4500 001 2103404 005 2020-01-21 008 2017 bl uuuu u00u1 u #d 020 $a978-1-5386-3327-4 024 7 $a10.1109/Multi-Temp.2017.8035234$2DOI 100 1 $aGONÇALVES, R. R. do V. 245 $aAgricultural monitoring using clustering techniques on satellite image time series of low spatial resolution.$h[electronic resource] 260 $aIn: INTERNATIONAL WORKSHOP ON THE ANALYSIS OF MULTITEMPORAL REMOTE SENSING IMAGES, 9., 2017, Brugge. Proceedings... Piscataway: IEEE$c2017 300 $a4 p. 500 $aMultiTemp 2017. 520 $aAbstract: This paper discuss how to use the clustering analysis to discover and extract useful information from multi-temporal satellite images with low spatial resolution to improve the agricultural monitoring of sugarcane fields. A large database of satellite images and specific software were used to perform the images pre-processing, time series extraction, clustering method applying and data visualization on several steps throughout the analysis process. The pre-processing phase corresponded to an accurate geometric correction, which is a requirement for applications of time series of satellite images such as the agricultural monitoring. Other steps in the analysis process were accomplished by a graphical interface to improve the interaction with the users. Approach validation was done using NDVI images of sugarcane fields because of their economic importance as source of ethanol and as effective alternative to replace fossil fuels and mitigate greenhouse gases emissions. According to the analysis done, the methodology allowed to identify areas with similar agricultural development patterns, also considering different growing seasons for the crops, covering monthly and annual periods. Results confirm that satellite images of low spatial resolution, such as that from the AVHRR/NOAA sensors, can indeed be satisfactorily used to monitor agricultural crops in regional scale. 650 $aCluster investigation 650 $aTime series analysis 700 1 $aZULLO, J. 700 1 $aROMANI, L. A. S. 700 1 $aAMARAL, B. F. do 700 1 $aSOUSA, E. P. M.
Download
Esconder MarcMostrar Marc Completo |
Registro original: |
Embrapa Agricultura Digital (CNPTIA) |
|
Biblioteca |
ID |
Origem |
Tipo/Formato |
Classificação |
Cutter |
Registro |
Volume |
Status |
URL |
Voltar
|
|
Registros recuperados : 4 | |
3. |  | SILVEIRA, S. V. da; BEN, R. L.; BOTTEGA, L.; ZANUS, M. C.; GUERRA, C. C.; VELHO, R. de S.; PEREIRA, G. E. (ed.). Produção integrada de uva para processamento - vinho e suco : caderno do estabelecimento vinícola. Bento Gonçalves, RS: Embrapa Uva e Vinho, 2015. v. 3, 29 p. Publicação digitalizada (2016)Tipo: Autoria/Organização/Edição de Livros |
Biblioteca(s): Embrapa Uva e Vinho. |
|    |
4. |  | SILVEIRA, S. V. da; GARRIDO, L. da R.; HOFFMANN, A.; VELHO, R. de S.; FIALHO, F. B.; ZILIO, R. A.; LOPES, P. R. C.; GUERRA, C. C.; BOTTON, M.; VARGAS, L. (ed.). Produção integrada de uva para processamento - vinho e suco: caderno de campo modelo. Bento Gonçalves, RS: Embrapa Uva e Vinho, 2015. v. 4, 34 p. Publicação digitalizada (2016)Tipo: Autoria/Organização/Edição de Livros |
Biblioteca(s): Embrapa Uva e Vinho. |
|    |
Registros recuperados : 4 | |
|
Nenhum registro encontrado para a expressão de busca informada. |
|
|