|
|
 | Acesso ao texto completo restrito à biblioteca da Embrapa Agricultura Digital. Para informações adicionais entre em contato com cnptia.biblioteca@embrapa.br. |
Registro Completo |
Biblioteca(s): |
Embrapa Agricultura Digital. |
Data corrente: |
20/12/2017 |
Data da última atualização: |
07/01/2020 |
Tipo da produção científica: |
Artigo em Periódico Indexado |
Autoria: |
LASSO, E.; THAMADA, T. T.; MEIRA, C. A. A.; CORRALES, J. C. |
Afiliação: |
EMMANUEL LASSO, University of Cauca; THIAGO TOSHIYUKI THAMADA, Unicamp; CARLOS ALBERTO ALVES MEIRA, CNPTIA; JUAN CARLOS CORRALES, University of Cauca. |
Título: |
Expert system for coffee rust detection based on supervised learning and graph pattern matching. |
Ano de publicação: |
2017 |
Fonte/Imprenta: |
International Journal of Metadata, Semantics and Ontologies, v. 12, n. 1, p. 19-27, 2017. |
DOI: |
10.1504/IJMSO.2017.10008638 |
Idioma: |
Inglês |
Conteúdo: |
Abstract: Diseases in agricultural production systems represent one of the main reasons of losses and poor-quality products. For coffee production, experts in this area suggest that weather conditions and crop physical properties are the main variables that determine the development of coffee rust. This paper proposes an extraction of rules to detect coffee rust from induction of decision trees and expert knowledge. In order to obtain a model with greater expressiveness and interpretability, a graph-based representation is proposed. Finally, the extracted rules are evaluated using an expert system supported on graph pattern matching. |
Palavras-Chave: |
Árvore de decisão; Coffee rust; Decision tree; Ferrugem cafeeira; Graph pattern matching; Sistema especialista. |
Thesagro: |
Agricultura; Doença de planta; Hemileia vastatrix. |
Thesaurus Nal: |
Agriculture; Expert systems; Plant diseases and disorders. |
Categoria do assunto: |
X Pesquisa, Tecnologia e Engenharia |
Marc: |
LEADER 01618naa a2200313 a 4500 001 2082986 005 2020-01-07 008 2017 bl uuuu u00u1 u #d 024 7 $a10.1504/IJMSO.2017.10008638$2DOI 100 1 $aLASSO, E. 245 $aExpert system for coffee rust detection based on supervised learning and graph pattern matching.$h[electronic resource] 260 $c2017 520 $aAbstract: Diseases in agricultural production systems represent one of the main reasons of losses and poor-quality products. For coffee production, experts in this area suggest that weather conditions and crop physical properties are the main variables that determine the development of coffee rust. This paper proposes an extraction of rules to detect coffee rust from induction of decision trees and expert knowledge. In order to obtain a model with greater expressiveness and interpretability, a graph-based representation is proposed. Finally, the extracted rules are evaluated using an expert system supported on graph pattern matching. 650 $aAgriculture 650 $aExpert systems 650 $aPlant diseases and disorders 650 $aAgricultura 650 $aDoença de planta 650 $aHemileia vastatrix 653 $aÁrvore de decisão 653 $aCoffee rust 653 $aDecision tree 653 $aFerrugem cafeeira 653 $aGraph pattern matching 653 $aSistema especialista 700 1 $aTHAMADA, T. T. 700 1 $aMEIRA, C. A. A. 700 1 $aCORRALES, J. C. 773 $tInternational Journal of Metadata, Semantics and Ontologies$gv. 12, n. 1, p. 19-27, 2017.
Download
Esconder MarcMostrar Marc Completo |
Registro original: |
Embrapa Agricultura Digital (CNPTIA) |
|
Biblioteca |
ID |
Origem |
Tipo/Formato |
Classificação |
Cutter |
Registro |
Volume |
Status |
URL |
Voltar
|
|
Registros recuperados : 1 | |
1. |  | BARTZ, M. L. C.; BARRETO, J.; SANTOS, A.; DUDAS, R. T.; FERREIRA, T.; MAIA, L. dos S.; DEMETRIO, W. C.; SMOKANIT, M.; TAVARES, A. A.; SCHUSTER, P. A.; HERNANI, L. C.; BROWN, G. G. Earthworm richness in no-tillage farming systems and riparian forests in Southern and Southeastern Brazil. Zootaxa, v. 5255, n. 1, p. 362-376, 2023.Tipo: Artigo em Periódico Indexado | Circulação/Nível: A - 4 |
Biblioteca(s): Embrapa Florestas; Embrapa Solos. |
|    |
Registros recuperados : 1 | |
|
Nenhum registro encontrado para a expressão de busca informada. |
|
|