|
|
 | Acesso ao texto completo restrito à biblioteca da Embrapa Solos. Para informações adicionais entre em contato com cnps.biblioteca@embrapa.br. |
Registro Completo |
Biblioteca(s): |
Embrapa Solos. |
Data corrente: |
23/08/2016 |
Data da última atualização: |
23/08/2016 |
Tipo da produção científica: |
Capítulo em Livro Técnico-Científico |
Autoria: |
PINHEIRO, H. S. K.; OWENS, P. R.; CHAGAS, C. S.; CARVALHO JUNIOR, W.; ANJOS, L. H. C. |
Afiliação: |
HELENA S. K. PINHEIRO, UFRRJ; P. R. OWENS, PURDUE UNIVERSITY; CESAR DA SILVA CHAGAS, CNPS; WALDIR DE CARVALHO JUNIOR, CNPS; L. H. C. ANJOS, UFRRJ. |
Título: |
Applying artificial neural networks utilizing geomorphons to predict soil classes in a brazilian watershed. |
Ano de publicação: |
2016 |
Fonte/Imprenta: |
In: ZHANG, G.-L.; BRUS, D.; LIU, F.; SONG, X.-D.; LAGACHERIE, P. (Ed.). Digital soil mapping across paradigms, scales and boundaries. New York: Springer, 2016. cap. 8, p. 89-102. |
Idioma: |
Inglês |
Conteúdo: |
The use of landscape terrain attributes associated with the field information in geographic information systems (GISs) helps to improve the methods applied in soil survey. Geomorphons is a novel technique to map surface elements from digital elevation model and visibility distance (search radius) of a central point in the landscape, which can adopt flexible scales. The main goal of this study was to evaluate the potential for incorporating Geomorphons, which is used to recognize landscape patterns and to improve the soil class predictions by artificial neural networks (ANNs). The procedures involved the acquisition of a cartographic database, creating digital models that represent landscape attributes relevant to paedogenesis on the research site (including Geomorphons of different search radius), sample collection and description of one hundred soil profiles in predefined locations, and finally the supervised classification by neural networks. The covariates used were as follows: elevation, slope, curvature, combined topographic index (CTI), euclidean distance, clay minerals, iron oxide, normalized difference vegetation index (NDVI), geology, and Geomorphons. All models for the terrain attributes have 30-m pixel resolution, and these variables correspond to neurons in the input layer of the neural networks. The output layer of the supervised classification corresponded to the nine dominant soil classes in the study area. To define the appropriate scale of Geomorphons map, sixteen sets of neural networks contain each one of the terrain attributes plus a Geomorphons map calculated from different search radius. For comparative purposes, one of the sets included no Geomorphons. Selection of the appropriate Geomorphons search radius was based on the statistical indexes obtained from a confusion matrix. The results showed that the best classification used the Geomorphons map obtained by forty-five pixels of search radius, in combination with other variables. This classifier presented values to kappa index and global accuracy corresponding to 0.74 and 77.0, respectively. MenosThe use of landscape terrain attributes associated with the field information in geographic information systems (GISs) helps to improve the methods applied in soil survey. Geomorphons is a novel technique to map surface elements from digital elevation model and visibility distance (search radius) of a central point in the landscape, which can adopt flexible scales. The main goal of this study was to evaluate the potential for incorporating Geomorphons, which is used to recognize landscape patterns and to improve the soil class predictions by artificial neural networks (ANNs). The procedures involved the acquisition of a cartographic database, creating digital models that represent landscape attributes relevant to paedogenesis on the research site (including Geomorphons of different search radius), sample collection and description of one hundred soil profiles in predefined locations, and finally the supervised classification by neural networks. The covariates used were as follows: elevation, slope, curvature, combined topographic index (CTI), euclidean distance, clay minerals, iron oxide, normalized difference vegetation index (NDVI), geology, and Geomorphons. All models for the terrain attributes have 30-m pixel resolution, and these variables correspond to neurons in the input layer of the neural networks. The output layer of the supervised classification corresponded to the nine dominant soil classes in the study area. To define the appropriate scale of Geomorphons map, s... Mostrar Tudo |
Palavras-Chave: |
Atributos geomorfométricos; GRASS; Mapeamento digital de solos; Padrões ternários; Redes neurais artificiais. |
Categoria do assunto: |
P Recursos Naturais, Ciências Ambientais e da Terra |
Marc: |
LEADER 02953naa a2200229 a 4500 001 2051514 005 2016-08-23 008 2016 bl uuuu u00u1 u #d 100 1 $aPINHEIRO, H. S. K. 245 $aApplying artificial neural networks utilizing geomorphons to predict soil classes in a brazilian watershed.$h[electronic resource] 260 $c2016 520 $aThe use of landscape terrain attributes associated with the field information in geographic information systems (GISs) helps to improve the methods applied in soil survey. Geomorphons is a novel technique to map surface elements from digital elevation model and visibility distance (search radius) of a central point in the landscape, which can adopt flexible scales. The main goal of this study was to evaluate the potential for incorporating Geomorphons, which is used to recognize landscape patterns and to improve the soil class predictions by artificial neural networks (ANNs). The procedures involved the acquisition of a cartographic database, creating digital models that represent landscape attributes relevant to paedogenesis on the research site (including Geomorphons of different search radius), sample collection and description of one hundred soil profiles in predefined locations, and finally the supervised classification by neural networks. The covariates used were as follows: elevation, slope, curvature, combined topographic index (CTI), euclidean distance, clay minerals, iron oxide, normalized difference vegetation index (NDVI), geology, and Geomorphons. All models for the terrain attributes have 30-m pixel resolution, and these variables correspond to neurons in the input layer of the neural networks. The output layer of the supervised classification corresponded to the nine dominant soil classes in the study area. To define the appropriate scale of Geomorphons map, sixteen sets of neural networks contain each one of the terrain attributes plus a Geomorphons map calculated from different search radius. For comparative purposes, one of the sets included no Geomorphons. Selection of the appropriate Geomorphons search radius was based on the statistical indexes obtained from a confusion matrix. The results showed that the best classification used the Geomorphons map obtained by forty-five pixels of search radius, in combination with other variables. This classifier presented values to kappa index and global accuracy corresponding to 0.74 and 77.0, respectively. 653 $aAtributos geomorfométricos 653 $aGRASS 653 $aMapeamento digital de solos 653 $aPadrões ternários 653 $aRedes neurais artificiais 700 1 $aOWENS, P. R. 700 1 $aCHAGAS, C. S. 700 1 $aCARVALHO JUNIOR, W. 700 1 $aANJOS, L. H. C. 773 $tIn: ZHANG, G.-L.; BRUS, D.; LIU, F.; SONG, X.-D.; LAGACHERIE, P. (Ed.). Digital soil mapping across paradigms, scales and boundaries. New York: Springer, 2016. cap. 8, p. 89-102.
Download
Esconder MarcMostrar Marc Completo |
Registro original: |
Embrapa Solos (CNPS) |
|
Biblioteca |
ID |
Origem |
Tipo/Formato |
Classificação |
Cutter |
Registro |
Volume |
Status |
URL |
Voltar
|
|
Registros recuperados : 7 | |
2. |  | CORRÊA, R. C.; RIBEIRO, J.; VOLCAN, D.; NORA, L.; KROLOW, A. C. R. Influência do tempo de contato e concentração de antioxidante convencional no purê de maçã da variedade fuji e gala. In: SIMPOSIO DE ALIMENTOS, 9., 2015, Passo Fundo. A indústria de alimentos e a saúde do consumidor: [anais]. Passo Fundo: UPF, 2015. Tecnologia de alimentos, trabalho T55. 5 p.Tipo: Artigo em Anais de Congresso |
Biblioteca(s): Embrapa Clima Temperado. |
|    |
3. |  | IARK, D.; BUZZO, A. J. dos R.; GARCIA, J. A. A.; CORRÊA, V. G.; HELM, C. V.; CORRÊA, R. C. G.; PERALTA, R. A.; MOREIRA, R. de F. P. M.; BRACHT, A.; PERALTA, R. M. Degradação do corante vermelho do Congo pela lacase de Oudemansiella canarii: identificação dos metabólitos e avaliação da toxicidade. In: SIMPÓSIO DE BIOQUÍMICA E BIOTECNOLOGIA, 7., 2019, Londrina. Inovação tecnológica e desenvolvimento sustentável. Londrina: UEL, 2019. 4 p. Publicado no Anais Eletrônico da Galoá Proceddings.Tipo: Artigo em Anais de Congresso |
Biblioteca(s): Embrapa Florestas. |
|    |
4. |  | IARK, D.; BUZZO, A. J. dos R.; GARCIA, J. A. A.; CORREA, V. G.; HELM, C. V.; CORRÊA, R. C. G.; PERALTA, R. A.; MOREIRA, R. de F. P. M.; BRACHT, A.; PERALTA, R. M. Enzymatic degradation and detoxification of azo dye Congo red by a new laccase from Oudemansiella canarii. Bioresource Technology, 289, article 121655, Oct. 2019. 7 p.Tipo: Artigo em Periódico Indexado | Circulação/Nível: A - 1 |
Biblioteca(s): Embrapa Florestas. |
|    |
5. |  | VIEIRA, T. F.; CORRÊA, R. C. G.; MOREIRA, R. de F. P. M.; PERALTA, R. A.; LIMA, E. A. de; HELM, C. V.; GARCIA, J. A. A.; BRACHT, A.; PERALTA, R. M. Valorization of peach palm (Bactris gasipaes Kunth) waste: production of antioxidant xylooligosaccharides. Waste and Biomass Valorization, 2021. Publicado em 6 de maio de 2021.Tipo: Artigo em Periódico Indexado | Circulação/Nível: A - 1 |
Biblioteca(s): Embrapa Florestas. |
|    |
6. |  | SPACKI, K. de C.; NOVI, D. M. P.; DURIGON, D. C.; FRAGA, F. C.; SANTOS, L. F. O.; HELM, C. V.; LIMA, E. A. de; PERALTA, R. A.; MOREIRA, R. de F. P. M.; CORRÊA, R. C. G.; BRACHT, A.; PERALTA, R. M. Improving enzymatic saccharification of peach palm (Bactris gasipaes) waste by biological pretreatment with Pleurotus ostreatus. In: SIMPÓSIO LATINO AMERICANO DE CIÊNCIA DE ALIMENTOS E NUTRIÇÃO, 15., 2023, Campinas. Caderno de resumos [...]. Campinas: Galoá Science, 2023. p. 109-110. SLACAN 2023.Tipo: Resumo em Anais de Congresso |
Biblioteca(s): Embrapa Florestas. |
|    |
7. |  | SPACKI, K. de C.; NOVI, D. M. P.; OLIVEIRA-JUNIOR, V. A. de; DURIGON, D. C.; FRAGA, F. C.; SANTOS, L. F. O. dos; HELM, C. V.; LIMA, E. A. de; PERALTA, R. A.; MOREIRA, R. de F. P. M.; CORRÊA, R. C. G.; BRACHT, A.; PERALTA, R. M. Improving enzymatic saccharification of peach palm (Bactris gasipaes) wastes via biological pretreatment with Pleurotus ostreatus. Plants, v. 12, n. 15, 2824, p. 1-16, 2023.Tipo: Artigo em Periódico Indexado | Circulação/Nível: A - 4 |
Biblioteca(s): Embrapa Florestas. |
|    |
Registros recuperados : 7 | |
|
Nenhum registro encontrado para a expressão de busca informada. |
|
|