|
|
 | Acesso ao texto completo restrito à biblioteca da Embrapa Agrobiologia. Para informações adicionais entre em contato com cnpab.biblioteca@embrapa.br. |
Registro Completo |
Biblioteca(s): |
Embrapa Agrobiologia. |
Data corrente: |
05/03/2021 |
Data da última atualização: |
11/11/2022 |
Tipo da produção científica: |
Capítulo em Livro Técnico-Científico |
Autoria: |
ZAMAN, M.; KLEINEIDAM, K.; BAKKEN, L.; BERENDT, J.; BRACKEN, C.; BUTTERBACH-BAHL, K.; CAI, Z.; CHANG, S. X.; CLOUGH, T.; DAWAR, K.; DING, W. X.; DÖRSCH, P.; MARTINS, M. dos R.; ECKHARDT, C.; FIEDLER, T.; FROSCH, T.; GOOPY, J.; GORRES, C. M.; GUPTA, A.; HENJES, S.; HOFMMAN, M. E. G.; HORN, M. A.; JAHANGIR, M. M. R.; JANSEN-WILLEMS, A.; LENHART, K.; HENG, L.; LEWICKA-SZCZEBAK, D.; LUCIC, G.; MERBOLD, L.; MOHN, J.; MOLSTAD, L.; MOSER, G.; MURPHY, P.; SANZ-COBENA, A.; SIMEK, M.; URQUIAGA, S.; WELL, R.; WRAGE-MÖNNIG, N.; ZAMAN, S.; SHANG, J.; MÜLLER, C. |
Título: |
Climate-smart agriculture practices for mitigating greenhouse gas emissions. |
Ano de publicação: |
2021 |
Fonte/Imprenta: |
In: ZAMAN, M.; HENG, L.; Müller, C. (Ed.). Measuring emission of agricultural greenhouse gases and developing mitigation options using nuclear and related techniques: applications of nuclear techniques for GHGs. London: Springer, 2021. Chapter 8. |
Páginas: |
p. 303-328 |
Idioma: |
Inglês |
Conteúdo: |
Agricultural lands make up approximately 37% of the global land surface, and agriculture is a significant source of greenhouse gas (GHG) emissions, including carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). Those GHGs are responsible for the majority of the anthropogenic global warming effect. Agricultural GHG emissions are associated with agricultural soil management (e.g. tillage), use of both synthetic and organic fertilisers, livestock management, burning of fossil fuel for agricultural perations, and burning of agricultural residues and land use change. When natural ecosystems such as grasslands are converted to agricultural production, 20?40% of the soil organic carbon (SOC) is lost over time, following cultivation. We thus need to develop management practices that can maintain or even increase SOC storage in and reduce GHG emissions from agricultural ecosystems. We need to design systematic approaches and agricultural strategies that can ensure sustainable food production under predicted climate change scenarios, approaches that are being called climate-smart agriculture (CSA). Climate-smart agricultural management practices, including conservation tillage, use of cover crops and biochar application to agricultural fields, and strategic application of synthetic and organic fertilisers have been considered a way to reduce GHG emission from agriculture. Agricultural management practices can be improved to decreasing disturbance to the soil by decreasing the frequency and extent of cultivation as a way to minimise soil C loss and/or to increase soil C storage. Fertiliser nitrogen (N) use efficiency can be improved to reduce fertilizer N application and N loss. Management measures can also be taken to minimise agricultural biomass burning. This chapter reviews the current literature on CSA practices that are available to reduce GHG emissions and increase soil C sequestration and develops a guideline on best management practices to reduce GHG emissions, increase C sequestration, and enhance crop productivity in agricultural production systems. MenosAgricultural lands make up approximately 37% of the global land surface, and agriculture is a significant source of greenhouse gas (GHG) emissions, including carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). Those GHGs are responsible for the majority of the anthropogenic global warming effect. Agricultural GHG emissions are associated with agricultural soil management (e.g. tillage), use of both synthetic and organic fertilisers, livestock management, burning of fossil fuel for agricultural perations, and burning of agricultural residues and land use change. When natural ecosystems such as grasslands are converted to agricultural production, 20?40% of the soil organic carbon (SOC) is lost over time, following cultivation. We thus need to develop management practices that can maintain or even increase SOC storage in and reduce GHG emissions from agricultural ecosystems. We need to design systematic approaches and agricultural strategies that can ensure sustainable food production under predicted climate change scenarios, approaches that are being called climate-smart agriculture (CSA). Climate-smart agricultural management practices, including conservation tillage, use of cover crops and biochar application to agricultural fields, and strategic application of synthetic and organic fertilisers have been considered a way to reduce GHG emission from agriculture. Agricultural management practices can be improved to decreasing disturbance to the soil by decreasing the ... Mostrar Tudo |
Thesaurus Nal: |
Carbon dioxide; Carbon sequestration; climate change; greenhouse gas emissions. |
Categoria do assunto: |
P Recursos Naturais, Ciências Ambientais e da Terra |
Marc: |
LEADER 03974naa a2200661 a 4500 001 2130525 005 2022-11-11 008 2021 bl uuuu u00u1 u #d 100 1 $aZAMAN, M. 245 $aClimate-smart agriculture practices for mitigating greenhouse gas emissions.$h[electronic resource] 260 $c2021 300 $ap. 303-328 520 $aAgricultural lands make up approximately 37% of the global land surface, and agriculture is a significant source of greenhouse gas (GHG) emissions, including carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). Those GHGs are responsible for the majority of the anthropogenic global warming effect. Agricultural GHG emissions are associated with agricultural soil management (e.g. tillage), use of both synthetic and organic fertilisers, livestock management, burning of fossil fuel for agricultural perations, and burning of agricultural residues and land use change. When natural ecosystems such as grasslands are converted to agricultural production, 20?40% of the soil organic carbon (SOC) is lost over time, following cultivation. We thus need to develop management practices that can maintain or even increase SOC storage in and reduce GHG emissions from agricultural ecosystems. We need to design systematic approaches and agricultural strategies that can ensure sustainable food production under predicted climate change scenarios, approaches that are being called climate-smart agriculture (CSA). Climate-smart agricultural management practices, including conservation tillage, use of cover crops and biochar application to agricultural fields, and strategic application of synthetic and organic fertilisers have been considered a way to reduce GHG emission from agriculture. Agricultural management practices can be improved to decreasing disturbance to the soil by decreasing the frequency and extent of cultivation as a way to minimise soil C loss and/or to increase soil C storage. Fertiliser nitrogen (N) use efficiency can be improved to reduce fertilizer N application and N loss. Management measures can also be taken to minimise agricultural biomass burning. This chapter reviews the current literature on CSA practices that are available to reduce GHG emissions and increase soil C sequestration and develops a guideline on best management practices to reduce GHG emissions, increase C sequestration, and enhance crop productivity in agricultural production systems. 650 $aCarbon dioxide 650 $aCarbon sequestration 650 $aclimate change 650 $agreenhouse gas emissions 700 1 $aKLEINEIDAM, K. 700 1 $aBAKKEN, L. 700 1 $aBERENDT, J. 700 1 $aBRACKEN, C. 700 1 $aBUTTERBACH-BAHL, K. 700 1 $aCAI, Z. 700 1 $aCHANG, S. X. 700 1 $aCLOUGH, T. 700 1 $aDAWAR, K. 700 1 $aDING, W. X. 700 1 $aDÖRSCH, P. 700 1 $aMARTINS, M. dos R. 700 1 $aECKHARDT, C. 700 1 $aFIEDLER, T. 700 1 $aFROSCH, T. 700 1 $aGOOPY, J. 700 1 $aGORRES, C. M. 700 1 $aGUPTA, A. 700 1 $aHENJES, S. 700 1 $aHOFMMAN, M. E. G. 700 1 $aHORN, M. A. 700 1 $aJAHANGIR, M. M. R. 700 1 $aJANSEN-WILLEMS, A. 700 1 $aLENHART, K. 700 1 $aHENG, L. 700 1 $aLEWICKA-SZCZEBAK, D. 700 1 $aLUCIC, G. 700 1 $aMERBOLD, L. 700 1 $aMOHN, J. 700 1 $aMOLSTAD, L. 700 1 $aMOSER, G. 700 1 $aMURPHY, P. 700 1 $aSANZ-COBENA, A. 700 1 $aSIMEK, M. 700 1 $aURQUIAGA, S. 700 1 $aWELL, R. 700 1 $aWRAGE-MÖNNIG, N. 700 1 $aZAMAN, S. 700 1 $aSHANG, J. 700 1 $aMÜLLER, C. 773 $tIn: ZAMAN, M.; HENG, L.; Müller, C. (Ed.). Measuring emission of agricultural greenhouse gases and developing mitigation options using nuclear and related techniques: applications of nuclear techniques for GHGs. London: Springer, 2021. Chapter 8.
Download
Esconder MarcMostrar Marc Completo |
Registro original: |
Embrapa Agrobiologia (CNPAB) |
|
Biblioteca |
ID |
Origem |
Tipo/Formato |
Classificação |
Cutter |
Registro |
Volume |
Status |
URL |
Voltar
|
|
Registros recuperados : 14 | |
3. |  | BOSCO, D. D.; SINSKI, I.; J. A. Fernando; QUECINI, V. Perfil transcricional em escala genômica de genes associados a respostas à temperatura em videira. In:CONGRESSO BRASILEIRO DE FISIOLOGIA VEGETAL, 15., 2015; Conferência Brasil-Israel de Ciências de Plantas, 1., 2015, Foz do Iguaçú, PR. Anais... Foz do Iguaçú: SBFV, 2015.Tipo: Resumo em Anais de Congresso |
Biblioteca(s): Embrapa Uva e Vinho. |
|    |
5. |  | BOSCO, D. D.; SINSKI, I.; RITSCHEL, P. S.; QUECINI, V. M. Resíduos de ácido 2,4-diclorofenoxiacético em vidrarias de cultura de tecidos: seus efeitos e um protocolo para descontaminação. In: ENCONTRO NACIONAL SOBRE METODOLOGIAS E GESTÃO DE LABORATÓRIOS DA EMBRAPA, 16.; SIMPÓSIO SOBRE METODOLOGIAS DE LABORATÓRIO DE PESQUISA AGROPECUÁRIA, 3., 2011, Bento Gonçalves. Trabalhos científicos: [resumos]... Bento Gonçalves: Embrapa Uva e Vinho, 2011. Não paginado. Resumo.Tipo: Resumo em Anais de Congresso |
Biblioteca(s): Embrapa Uva e Vinho. |
|    |
6. |  | QUECINI, V.; SINSKI, I.; BOSCO, D. D.; REVERS, L. F.; RITSCHEL, P. S.; CAMARGO, U. A. Gene transfer to Vitis sp. via co-cultivation of shoot apices with Agrobacterium tumefaciens. In: CONGRESSO BRASILEIRO DE VITICULTURA E ENOLOGIA, 12., 2008, Bento Gonçalves. Anais... Bento Gonçalves: Embrapa Uva e Vinho, 2008. p. 148. Resumo.Tipo: Resumo em Anais de Congresso |
Biblioteca(s): Embrapa Uva e Vinho. |
|    |
7. |  | ANTONIOLLI, L. R.; ALVES FILHO, E. G.; BOSCO, D. D.; RUFATO, L.; GEBLER, L. Uso do DA-Meter como método não destrutivo no monitoramento da maturação de maçãs. In: BASSOI, L. H.; BERNARDI, A. C. de C.; VAZ, C. M. P.; PIRES, J. L. F.; GEBLER, L.; JORGE, L. A. de C.; INAMASU, R. Y. (ed.). Agricultura de precisão: um novo olhar na era digital. São Carlos, SP: Cubo, 2024. seção 3, cap. 54, p. 482-487.Tipo: Capítulo em Livro Técnico-Científico |
Biblioteca(s): Embrapa Uva e Vinho. |
|    |
9. |  | BOSCO, D. D.; FERNANDO, J. A.; MAZZAFERA, P.; MAIA, J. D. G.; RITSCHEL, P. S.; QUECINI, V. Distinct transcriptional networks control environment sensing and development in wild and cultivated grapevine genotypes. In: Congresso Brasileiro de Genética, 61., 2015, Águas Lindas de Lindóia, SP. Águas Lindas de Lindóia, SP: SBG, 2015.Tipo: Resumo em Anais de Congresso |
Biblioteca(s): Embrapa Uva e Vinho. |
|    |
10. |  | BOSCO, D. D.; SINSKI, I.; GIRARDI, C. L.; MAIA, J. D. G.; RITSCHEL, P. S.; QUECINI, V. The Phytochrome-interacting factor genes in grapevine and their association to the gibberellin signal transduction pathway. In: CONGRESSO BRASILEIRO DE GENÉTICA, 57., 2011, Águas de Lindóia. Anais... Águas de Lindóia: SBG, 2011. p. 21.Tipo: Resumo em Anais de Congresso |
Biblioteca(s): Embrapa Uva e Vinho. |
|    |
11. |  | SINSKI, I.; BOSCO, D. D.; PIEROZZI, N. I.; MAIA, J. D. G.; RITSCHEL, P. S.; QUECINI, V. Improving in vitro induction of autopolyploidy in grapevine seedless cultivars. Euphytica, Wageningen, v. 196, n. 2, p. 299-311, 2014.Tipo: Artigo em Periódico Indexado | Circulação/Nível: A - 2 |
Biblioteca(s): Embrapa Uva e Vinho. |
|    |
13. |  | BOSCO, D. D.; SINSKI, I.; COMACHIO, V.; MAIA, J. D. G.; FAJARDO, T. V. M.; RITSCHEL, P. S.; QUECINI, V. In vitro establishment and conservation of grapevine germplasm. In: INTERNATIONAL CROP SCIENCE CONGRESS, 6., 2012, Bento Gonçalves. [Proceedings...] [S.l.]: International Crop Science Society, 2012. Não paginado. 1 pendrive. Resumo 3096.Tipo: Resumo em Anais de Congresso |
Biblioteca(s): Embrapa Uva e Vinho. |
|    |
14. |  | QUECINI, V.; SINSKI, I.; BOSCO, D. D.; REVERS, L. F.; BERND, R. B.; RITSCHEL, P. S.; CAMARGO, U. A. Agrobacterium-mediated genetic transformation of Vitis sp. somatic embryogenesis. In: CONGRESSO BRASILEIRO DE VITICULTURA E ENOLOGIA, 12., 2008, Bento Gonçalves. Anais... Bento Gonçalves: Embrapa Uva e Vinho, 2008. p. 143. Resumo.Tipo: Resumo em Anais de Congresso |
Biblioteca(s): Embrapa Uva e Vinho. |
|    |
Registros recuperados : 14 | |
|
Expressão de busca inválida. Verifique!!! |
|
|