Registro Completo |
Biblioteca(s): |
Embrapa Agrobiologia. |
Data corrente: |
12/12/2024 |
Data da última atualização: |
12/12/2024 |
Tipo da produção científica: |
Artigo em Periódico Indexado |
Autoria: |
BERNARDES, M. B.; DAL’RIO, I; COELHO, M. R. R.; SELDIN, L. |
Afiliação: |
MATHEUS BARBOSA BERNARDES, UNIVERSIDADE FEDERAL DO RIO DE JANEIRO; ISABELLA DAL’RIO, UNIVERSIDADE FEDERAL DO RIO DE JANEIRO; MARCIA REED RODRIGUES COELHO, CNPAB; LUCY SELDIN, UNIVERSIDADE FEDERAL DO RIO DE JANEIRO. |
Título: |
Response of sweet potato cultivars to Bacillus velezensis T149-19 and Bacillus safensis T052-76 used as biofertilizers |
Ano de publicação: |
2024 |
Fonte/Imprenta: |
Heliyon, v. 10, n. 14, e34377, July 2024, |
ISSN: |
2405-8440 |
DOI: |
https://doi.org/10.1016/j.heliyon.2024.e34377 |
Idioma: |
Inglês |
Conteúdo: |
The global market of sweet potato (Ipomoea batatas (L.) Lam.) is continuously growing and, consequently, demands greater productivity from the agricultural sector. The use of biofertilizers facilitates plant growth by making essential nutrients available to crops or providing resistance against different abiotic and biotic factors. The strains Bacillus safensis T052-76 and Bacillus velezensis T149-19 have previously been inoculated in the sweet potato cultivar Ourinho, showing positive effects on plant shoot growth and inhibiting the phytopathogen Plenodomus destruens. To elucidate the effects of these strains on sweet potato growth, four different cultivars of sweet potato were selected: Capivara, IAPAR 69, Rosinha de Verdan and Roxa. The plants were grown in pots in a greenhouse and inoculated with the combined strains according to a randomized block design. A control (without the inoculation of both strains) was also used. A slight positive effect of the inoculation of the two Bacillus strains was observed on the aerial parts of some of the cultivars. An increase in the fresh weight of the sweet potatoes of the inoculated plants was obtained, varying from 2.7 to 11.4 %. The number of sweet potatoes obtained from the inoculated cultivars IAPAR 69 and Roxa increased 15.2 % and 16.7 %, respectively. The rhizosphere soil of each cultivar was further sampled for DNA extraction, and the 16S rRNA gene metabarcoding technique was used to determine how the introduction of these Bacillus strains influenced the rhizosphere bacterial community. The bacterial communities of the four different cultivars were dominated by Actinobacteria, Proteobacteria and Firmicutes. Nonmetric multidimensional scaling (NMDS) revealed that the rhizosphere bacterial communities of plants inoculated with Bacillus strains were more similar to each other than to the bacterial communities of uninoculated plants. This study highlights the contribution of these Bacillus strains to the promotion of sweet potato growth. MenosThe global market of sweet potato (Ipomoea batatas (L.) Lam.) is continuously growing and, consequently, demands greater productivity from the agricultural sector. The use of biofertilizers facilitates plant growth by making essential nutrients available to crops or providing resistance against different abiotic and biotic factors. The strains Bacillus safensis T052-76 and Bacillus velezensis T149-19 have previously been inoculated in the sweet potato cultivar Ourinho, showing positive effects on plant shoot growth and inhibiting the phytopathogen Plenodomus destruens. To elucidate the effects of these strains on sweet potato growth, four different cultivars of sweet potato were selected: Capivara, IAPAR 69, Rosinha de Verdan and Roxa. The plants were grown in pots in a greenhouse and inoculated with the combined strains according to a randomized block design. A control (without the inoculation of both strains) was also used. A slight positive effect of the inoculation of the two Bacillus strains was observed on the aerial parts of some of the cultivars. An increase in the fresh weight of the sweet potatoes of the inoculated plants was obtained, varying from 2.7 to 11.4 %. The number of sweet potatoes obtained from the inoculated cultivars IAPAR 69 and Roxa increased 15.2 % and 16.7 %, respectively. The rhizosphere soil of each cultivar was further sampled for DNA extraction, and the 16S rRNA gene metabarcoding technique was used to determine how the introduction of these Ba... Mostrar Tudo |
Palavras-Chave: |
Bacillus safensis; Bacillus velezensi; Growth promoting bacteria; Rhizosphere bacterial community. |
Thesaurus Nal: |
Sweet potatoes. |
Categoria do assunto: |
S Ciências Biológicas |
Marc: |
LEADER 02797naa a2200241 a 4500 001 2170616 005 2024-12-12 008 2024 bl uuuu u00u1 u #d 022 $a2405-8440 024 7 $ahttps://doi.org/10.1016/j.heliyon.2024.e34377$2DOI 100 1 $aBERNARDES, M. B. 245 $aResponse of sweet potato cultivars to Bacillus velezensis T149-19 and Bacillus safensis T052-76 used as biofertilizers$h[electronic resource] 260 $c2024 520 $aThe global market of sweet potato (Ipomoea batatas (L.) Lam.) is continuously growing and, consequently, demands greater productivity from the agricultural sector. The use of biofertilizers facilitates plant growth by making essential nutrients available to crops or providing resistance against different abiotic and biotic factors. The strains Bacillus safensis T052-76 and Bacillus velezensis T149-19 have previously been inoculated in the sweet potato cultivar Ourinho, showing positive effects on plant shoot growth and inhibiting the phytopathogen Plenodomus destruens. To elucidate the effects of these strains on sweet potato growth, four different cultivars of sweet potato were selected: Capivara, IAPAR 69, Rosinha de Verdan and Roxa. The plants were grown in pots in a greenhouse and inoculated with the combined strains according to a randomized block design. A control (without the inoculation of both strains) was also used. A slight positive effect of the inoculation of the two Bacillus strains was observed on the aerial parts of some of the cultivars. An increase in the fresh weight of the sweet potatoes of the inoculated plants was obtained, varying from 2.7 to 11.4 %. The number of sweet potatoes obtained from the inoculated cultivars IAPAR 69 and Roxa increased 15.2 % and 16.7 %, respectively. The rhizosphere soil of each cultivar was further sampled for DNA extraction, and the 16S rRNA gene metabarcoding technique was used to determine how the introduction of these Bacillus strains influenced the rhizosphere bacterial community. The bacterial communities of the four different cultivars were dominated by Actinobacteria, Proteobacteria and Firmicutes. Nonmetric multidimensional scaling (NMDS) revealed that the rhizosphere bacterial communities of plants inoculated with Bacillus strains were more similar to each other than to the bacterial communities of uninoculated plants. This study highlights the contribution of these Bacillus strains to the promotion of sweet potato growth. 650 $aSweet potatoes 653 $aBacillus safensis 653 $aBacillus velezensi 653 $aGrowth promoting bacteria 653 $aRhizosphere bacterial community 700 1 $aDAL’RIO, I 700 1 $aCOELHO, M. R. R. 700 1 $aSELDIN, L. 773 $tHeliyon$gv. 10, n. 14, e34377, July 2024
Download
Esconder MarcMostrar Marc Completo |
Registro original: |
Embrapa Agrobiologia (CNPAB) |
|