BDPA - Bases de Dados da Pesquisa Agropecuária Embrapa
 






Acesso ao texto completo restrito à biblioteca da Embrapa Agricultura Digital. Para informações adicionais entre em contato com cnptia.biblioteca@embrapa.br.
Registro Completo
Biblioteca(s):  Embrapa Agricultura Digital.
Data corrente:  24/09/2018
Data da última atualização:  07/01/2020
Tipo da produção científica:  Artigo em Periódico Indexado
Autoria:  HINNAH, F. D.; SENTELHAS, P. C.; MEIRA, C. A. A.; PAIVA, R. N.
Afiliação:  FERNANDO DILL HINNAH, Esalq/USP; PAULO CESAR SENTELHAS, Esalq/USP; CARLOS ALBERTO ALVES MEIRA, CNPTIA; RODRIGO NAVES PAIVA, Procafé Foundation, Varginha.
Título:  Weather-based coffee leaf rust apparent infection rate modeling.
Ano de publicação:  2018
Fonte/Imprenta:  International Journal of Biometeorology, v. 62, n. 10, p. 1847-1860, Oct. 2018.
DOI:  https://doi.org/10.1007/s00484-018-1587-2
Idioma:  Inglês
Conteúdo:  Abstract. Brazil is the major coffee producer in the world, with 2 million hectares cropped, with 75% of this area with Coffea arabica and 25% with Coffea canephora. Coffee leaf rust (CLR) is one of the main diseases that cause yield losses by reducing healthy leaf area. As CLR is highly influenced by weather conditions, this study aimed to determine the best linearization model to estimate the CLR apparent infection rate, to correlate CLR infection rates with weather variables, and to develop and assess the performance of weather-based infection rate models to be used as a disease warning system. The CLR epidemic was analyzed for 88 site-seasons, while progress curves were assessed by linear, monomolecular, logistic, Gompertz, and exponential linearization models for apparent infection rate determination. Correlations between CLR infection rates and weather variables were conducted at different periods. From these correlations, multiple linear regressions were developed to estimate CLR infection rates, using the most weather-correlated variables. The Gompertz growth model had the best fit with CLR progress curves. Minimum temperature and relative humidity were the weather variables most correlated to infection rate and, therefore, chosen to compose a CLR forecast system. Among the models developed, the one for the condition of high coffee yield at a narrow row spacing was the best, with only 9.4% of false negative occurrences for all the months assessed.
Palavras-Chave:  Coffee leaf rust; Estimation models; Gompertz; Linearização; Linearization; Taxa de infecção.
Thesagro:  Café; Coffea Arábica; Coffea Canephora; Hemileia Vastatrix.
Categoria do assunto:  X Pesquisa, Tecnologia e Engenharia
Marc:  Mostrar Marc Completo
Registro original:  Embrapa Agricultura Digital (CNPTIA)
Biblioteca ID Origem Tipo/Formato Classificação Cutter Registro Volume Status URL
CNPTIA19721 - 1UPCAP - DD
Voltar
Nenhum registro encontrado para a expressão de busca informada.
Nenhum registro encontrado para a expressão de busca informada.
 
 

Embrapa
Todos os direitos reservados, conforme Lei n° 9.610
Política de Privacidade
Área Restrita

Embrapa Agricultura Digital
Av. André Tosello, 209 - Barão Geraldo
Caixa Postal 6041- 13083-886 - Campinas, SP
SAC: https://www.embrapa.br/fale-conosco

Valid HTML 4.01 Transitional