Registro Completo |
Biblioteca(s): |
Embrapa Instrumentação. |
Data corrente: |
23/03/2022 |
Data da última atualização: |
24/06/2022 |
Tipo da produção científica: |
Artigo em Periódico Indexado |
Autoria: |
PINOTTI, L. M.; TARDIOLI, P. W.; FARINAS, C. S.; FERNÁNDEZ-LORENTE, G.; ORREGO, A. H.; GUISAN, J. M.; PESSELA, B. C. |
Afiliação: |
CRISTIANE SANCHEZ FARINAS, CNPDIA. |
Título: |
Stabilization of glycosylated ß-glucosidase by intramolecular crosslinking between oxidized glycosidic chains and lysine residues. |
Ano de publicação: |
2022 |
Fonte/Imprenta: |
Applied Biochemistry and Biotechnology, v. 192, 2020. |
Páginas: |
325?337 |
DOI: |
https://doi.org/10.1007/s12010-020-03321-x |
Idioma: |
Inglês |
Conteúdo: |
Many industrial enzymes can be highly glycosylated, including the β-glucosidase enzymes. Although glycosylation plays an important role in many biological processes, such chains can cause problems in the multipoint immobilization techniques of the enzymes, since the glycosylated chains can cover the reactive groups of the protein (e.g., Lys) and do not allow those groups to react with reactive groups of the support (e.g., aldehyde and epoxy groups). Nevertheless, the activated glycosylated chains can be used as excellent crosslinking agents. The glycosylated chains when oxidized with periodate can generate aldehyde groups capable of reacting with the amino groups of the protein itself. Such intramolecular crosslinks may have significant stabilizing effects. In this study, we investigated if the intramolecular crosslinking occurs in the oxidized βglucosidase and its effect on the stability of the enzyme. For this, the oxidation of glycosidic chains of β-glucosidase was carried out, allowing to demonstrate the formation of aldehyde groups and subsequent interaction with the amine groups and to verify the stability of the different forms of free enzyme (glycosylated and oxidized). Furthermore, we verified the influence of the glycosidic chains on the immobilization of β-glucosidase from Aspergillus niger and on the consequent stabilization. The results suggest that intramolecular crosslinking occurred and consequently the oxidized enzyme showed a much greater stabilization than the native enzyme (glycosylated). When the multipoint immobilization was performed in amino-epoxy-agarose supports, the stabilization of the oxidized enzyme increases by a 6-fold factor. The overall stabilization strategy was capable to promote an enzyme stabilization of 120-fold regarding to the soluble unmodified enzyme. MenosMany industrial enzymes can be highly glycosylated, including the β-glucosidase enzymes. Although glycosylation plays an important role in many biological processes, such chains can cause problems in the multipoint immobilization techniques of the enzymes, since the glycosylated chains can cover the reactive groups of the protein (e.g., Lys) and do not allow those groups to react with reactive groups of the support (e.g., aldehyde and epoxy groups). Nevertheless, the activated glycosylated chains can be used as excellent crosslinking agents. The glycosylated chains when oxidized with periodate can generate aldehyde groups capable of reacting with the amino groups of the protein itself. Such intramolecular crosslinks may have significant stabilizing effects. In this study, we investigated if the intramolecular crosslinking occurs in the oxidized βglucosidase and its effect on the stability of the enzyme. For this, the oxidation of glycosidic chains of β-glucosidase was carried out, allowing to demonstrate the formation of aldehyde groups and subsequent interaction with the amine groups and to verify the stability of the different forms of free enzyme (glycosylated and oxidized). Furthermore, we verified the influence of the glycosidic chains on the immobilization of β-glucosidase from Aspergillus niger and on the consequent stabilization. The results suggest that intramolecular crosslinking occurred and consequently the oxidized enzyme showed a much greater stabilization than... Mostrar Tudo |
Palavras-Chave: |
Immobilization; Stabilization enzymes. |
Categoria do assunto: |
-- |
Marc: |
LEADER 02610naa a2200241 a 4500 001 2141186 005 2022-06-24 008 2022 bl uuuu u00u1 u #d 024 7 $ahttps://doi.org/10.1007/s12010-020-03321-x$2DOI 100 1 $aPINOTTI, L. M. 245 $aStabilization of glycosylated ß-glucosidase by intramolecular crosslinking between oxidized glycosidic chains and lysine residues.$h[electronic resource] 260 $c2022 300 $a325?337 520 $aMany industrial enzymes can be highly glycosylated, including the β-glucosidase enzymes. Although glycosylation plays an important role in many biological processes, such chains can cause problems in the multipoint immobilization techniques of the enzymes, since the glycosylated chains can cover the reactive groups of the protein (e.g., Lys) and do not allow those groups to react with reactive groups of the support (e.g., aldehyde and epoxy groups). Nevertheless, the activated glycosylated chains can be used as excellent crosslinking agents. The glycosylated chains when oxidized with periodate can generate aldehyde groups capable of reacting with the amino groups of the protein itself. Such intramolecular crosslinks may have significant stabilizing effects. In this study, we investigated if the intramolecular crosslinking occurs in the oxidized βglucosidase and its effect on the stability of the enzyme. For this, the oxidation of glycosidic chains of β-glucosidase was carried out, allowing to demonstrate the formation of aldehyde groups and subsequent interaction with the amine groups and to verify the stability of the different forms of free enzyme (glycosylated and oxidized). Furthermore, we verified the influence of the glycosidic chains on the immobilization of β-glucosidase from Aspergillus niger and on the consequent stabilization. The results suggest that intramolecular crosslinking occurred and consequently the oxidized enzyme showed a much greater stabilization than the native enzyme (glycosylated). When the multipoint immobilization was performed in amino-epoxy-agarose supports, the stabilization of the oxidized enzyme increases by a 6-fold factor. The overall stabilization strategy was capable to promote an enzyme stabilization of 120-fold regarding to the soluble unmodified enzyme. 653 $aImmobilization 653 $aStabilization enzymes 700 1 $aTARDIOLI, P. W. 700 1 $aFARINAS, C. S. 700 1 $aFERNÁNDEZ-LORENTE, G. 700 1 $aORREGO, A. H. 700 1 $aGUISAN, J. M. 700 1 $aPESSELA, B. C. 773 $tApplied Biochemistry and Biotechnology$gv. 192, 2020.
Download
Esconder MarcMostrar Marc Completo |
Registro original: |
Embrapa Instrumentação (CNPDIA) |
|