|
|
 | Acesso ao texto completo restrito à biblioteca da Embrapa Recursos Genéticos e Biotecnologia. Para informações adicionais entre em contato com cenargen.biblioteca@embrapa.br. |
Registro Completo |
Biblioteca(s): |
Embrapa Instrumentação; Embrapa Recursos Genéticos e Biotecnologia. |
Data corrente: |
10/09/2021 |
Data da última atualização: |
03/10/2023 |
Tipo da produção científica: |
Artigo em Periódico Indexado |
Autoria: |
RAMOS, A. P. M.; GOMES, F. D. G.; PINHEIRO, M. M. F.; FURUYA, D. E. G.; GONÇALVEZ, W. N.; MARCATO JUNIOR, J.; MICHEREFF, M. F. F.; MORAES, M. C. B.; BORGES, M.; LAUMANN, R. A.; LIESENBERG, V.; JORGE, L. A. de C.; OSCO, L. P. |
Afiliação: |
ANA PAULA MARQUES RAMOS, UNOESTE; FELIPE DAVID GEORGES GOMES, UNOESTE; MAYARA MAEZANO FAITA PINHEIRO, UNOESTE; DANIELLE ELIS GARCIA FURUYA, UNOESTE; WESLEY NUNES GONÇALVEZ, UFMS; JOSÉ MARCATO JUNIOR, UFMS; MIRIAN FERNANDES FURTADO MICHEREFF; MARIA CAROLINA BLASSIOLI MORAES, Cenargen; MIGUEL BORGES, Cenargen; RAUL ALBERTO LAUMANN, Cenargen; VERALDO LIESENBERG, Udesc; LUCIO ANDRE DE CASTRO JORGE, CNPDIA; LUCAS PRADO OSCO, UNOESTE. |
Título: |
Detecting the attack of the fall armyworm (Spodoptera frugiperda) in cotton plants with machine learning and spectral measurements. |
Ano de publicação: |
2021 |
Fonte/Imprenta: |
Precision Agriculture, 2021. |
DOI: |
https://doi.org/10.1007/s11119-021-09845-4 |
Idioma: |
Inglês |
Notas: |
Na publicação: Maria Carolina Blassioli-Moraes; Raúl Alberto Alaumann. |
Conteúdo: |
ABSTRACT: The Spodoptera frugiperda (i.e., fall armyworm) causes irreversible damage in cotton cultivars, and its visual inspection on plants is a burdensome task for humans. A recent strategy to automatically do similar tasks is processing hyperspectral reflectance measurements with machine learning algorithms. Herein, its proposed a framework for modeling the spectral response of cotton plants under the fall armyworm attacks using machine learning algorithms, culminating in a theoretical model creation based on the band simulation process. A controlled experiment was conducted to collect hyperspectral radiance measurements from health and damage cotton plants over eight days. A hand-held spectroradiometer operating from 350 to 2500 nm was used. Several algorithms were evaluated, and a ranking approach was adopted to identify the most contributive wavelengths for detecting the damage. The Self-Organizing Map method was applied to organize the spectral wavelengths into groups, favoring the theoretical model creation for two sensors: OLI (Landsat-8) and MSI (Sentinel-2). It was found that the Random Forest algorithm produced the most suitable model, and the last day of analysis was better to separate healthy and damaged plants (F-measure: 0.912). The best spectral regions range from the red to near-infrared (650 to 1350 nm) and the shortwave infrared (1570 to 1640 nm). The theoretical model returned accurate results using both sensors (OLI, F-Measure?=?0.865, and MSI, F-Measure?=?0.886). In conclusion, the proposed framework contributes to accurately identifying cotton plants under the Spodoptera frugiperda attack for both hyperspectral and multispectral scales. MenosABSTRACT: The Spodoptera frugiperda (i.e., fall armyworm) causes irreversible damage in cotton cultivars, and its visual inspection on plants is a burdensome task for humans. A recent strategy to automatically do similar tasks is processing hyperspectral reflectance measurements with machine learning algorithms. Herein, its proposed a framework for modeling the spectral response of cotton plants under the fall armyworm attacks using machine learning algorithms, culminating in a theoretical model creation based on the band simulation process. A controlled experiment was conducted to collect hyperspectral radiance measurements from health and damage cotton plants over eight days. A hand-held spectroradiometer operating from 350 to 2500 nm was used. Several algorithms were evaluated, and a ranking approach was adopted to identify the most contributive wavelengths for detecting the damage. The Self-Organizing Map method was applied to organize the spectral wavelengths into groups, favoring the theoretical model creation for two sensors: OLI (Landsat-8) and MSI (Sentinel-2). It was found that the Random Forest algorithm produced the most suitable model, and the last day of analysis was better to separate healthy and damaged plants (F-measure: 0.912). The best spectral regions range from the red to near-infrared (650 to 1350 nm) and the shortwave infrared (1570 to 1640 nm). The theoretical model returned accurate results using both sensors (OLI, F-Measure?=?0.865, and MSI, F-Measu... Mostrar Tudo |
Palavras-Chave: |
Insect damage; Machine learning; Spectral data; Theoretical model. |
Categoria do assunto: |
-- |
Marc: |
null Download
Esconder MarcMostrar Marc Completo |
Registro original: |
Embrapa Instrumentação (CNPDIA) |
|
Biblioteca |
ID |
Origem |
Tipo/Formato |
Classificação |
Cutter |
Registro |
Volume |
Status |
URL |
Voltar
|
|
Registros recuperados : 14 | |
13. |  | MOREIRA, J. A. A.; ANDRADE, R. da S.; STONE, L. F.; CARVALHO, M. T. de M.; SILVA, J. H. da. Lâmina de irrigação e eficiência de uso de água do feijoeiro cultivado com diferentes níveis de cobertura do solo no sistema plantio direto. In: CONGRESSO NACIONAL DE PESQUISA DE FEIJÃO, 9., 2008, Campinas. Ciência e tecnologia na cadeia produtiva do feijão. Campinas: Instituto Agronômico, 2008. 1 CD-ROM. (IAC. Documentos, 85).Tipo: Artigo em Anais de Congresso / Nota Técnica |
Biblioteca(s): Embrapa Arroz e Feijão. |
|    |
14. |  | GONÇALVES, M. S.; COSTA, D. A. C. da; PEREIRA, C. R.; ANDRADE, R. da S.; COSTA, A. C. T. R. B.; COASTA, G. M. da; DORNELES, E. M. S.; GUIMARÃES, A. S. Colistin resistance in Escherichia coli isolated from bovine milk and feces. In: CONGRESSO BRASILEIRO DE QUALIDADE DO LEITE, 9., 2022, Goiânia. Inovação, sustentabilidade e oportunidades: anais. Curitiba: Conselho Brasileiro de Qualidade do Leite, 2022. p. 30-32.Tipo: Artigo em Anais de Congresso |
Biblioteca(s): Embrapa Gado de Leite. |
|    |
Registros recuperados : 14 | |
|
Nenhum registro encontrado para a expressão de busca informada. |
|
|