|
|
 | Acesso ao texto completo restrito à biblioteca da Embrapa Arroz e Feijão. Para informações adicionais entre em contato com cnpaf.biblioteca@embrapa.br. |
Registro Completo |
Biblioteca(s): |
Embrapa Arroz e Feijão. |
Data corrente: |
25/10/2023 |
Data da última atualização: |
25/10/2023 |
Tipo da produção científica: |
Artigo em Periódico Indexado |
Autoria: |
COSTA-NETO, G.; MATTA, D. H. da; FERNANDES, I. K.; STONE, L. F.; HEINEMANN, A. B. |
Afiliação: |
GERMANO COSTA-NETO, CORNELL UNIVERSITY, Ithaca-NY; DAVID HENRIQUES DA MATTA, UNIVERSIDADE FEDERAL DE GOIÁS; IGOR KUIVJOGI FERNANDES, UNIVERSIDADE FEDERAL DE GOIÁS; LUIS FERNANDO STONE, CNPAF; ALEXANDRE BRYAN HEINEMANN, CNPAF. |
Título: |
Environmental clusters defining breeding zones for tropical irrigated rice in Brazil. |
Ano de publicação: |
2023 |
Fonte/Imprenta: |
Agronomy Journal, 2023. |
ISSN: |
1435-0645 |
DOI: |
https://doi.org/10.1002/agj2.21481 |
Idioma: |
Inglês |
Notas: |
Early view. |
Conteúdo: |
Geographic and seasonal effects are important in driving selection decisions in rice breeding research. Adopting new strategies for characterizing environmental?phenotype associations is critical to understanding these effects, and the outcomes of their study could reflect the benefits of developing locally adapted cultivars. This study aimed to characterize Brazil's tropical irrigated rice (IR) environment, Latin America's largest rice production system. We integrated unsupervised (K-means clustering) and supervised (decision tree classifier) algorithms to identify environmental clusters (EC) based on historical yield data. The data set included 31 locations and 471 genotypes from 1982 to 2017. We used environmental features (EF), such as weather and geography, as input variables for our analysis, assuming the model as EC ∼ f (EF). Results indicate that the tropical IR production region can be divided into four primary breeding zones, with temperature emerging as a significant factor in the study area. After employing a linear mixed model analysis, we observed that the current relationship between genetics (G), environmental variation (E), and their interaction (G×E) in Brazil's tropical IR has a 1:6:2 ratio. However, when introducing our data-driven model based on EC, we reduced this ratio to 1:5:1. Therefore, the selection for local adaptability across a large region became more reliable. Our approach successfully identified EC in Brazil's tropical production region of IR, providing valuable insights for defining breeding zones and identifying more productive and stable seed production fields. MenosGeographic and seasonal effects are important in driving selection decisions in rice breeding research. Adopting new strategies for characterizing environmental?phenotype associations is critical to understanding these effects, and the outcomes of their study could reflect the benefits of developing locally adapted cultivars. This study aimed to characterize Brazil's tropical irrigated rice (IR) environment, Latin America's largest rice production system. We integrated unsupervised (K-means clustering) and supervised (decision tree classifier) algorithms to identify environmental clusters (EC) based on historical yield data. The data set included 31 locations and 471 genotypes from 1982 to 2017. We used environmental features (EF), such as weather and geography, as input variables for our analysis, assuming the model as EC ∼ f (EF). Results indicate that the tropical IR production region can be divided into four primary breeding zones, with temperature emerging as a significant factor in the study area. After employing a linear mixed model analysis, we observed that the current relationship between genetics (G), environmental variation (E), and their interaction (G×E) in Brazil's tropical IR has a 1:6:2 ratio. However, when introducing our data-driven model based on EC, we reduced this ratio to 1:5:1. Therefore, the selection for local adaptability across a large region became more reliable. Our approach successfully identified EC in Brazil's tropical production region... Mostrar Tudo |
Thesagro: |
Arroz Irrigado; Genótipo; Meio Ambiente; Melhoramento Genético Vegetal; Oryza Sativa; Sistema de Produção. |
Thesaurus Nal: |
Breeding; Climate models; Environmental factors; Genotype; Genotype-environment interaction; Rice; Tropical agriculture. |
Categoria do assunto: |
X Pesquisa, Tecnologia e Engenharia |
Marc: |
LEADER 02650naa a2200361 a 4500 001 2157493 005 2023-10-25 008 2023 bl uuuu u00u1 u #d 022 $a1435-0645 024 7 $ahttps://doi.org/10.1002/agj2.21481$2DOI 100 1 $aCOSTA-NETO, G. 245 $aEnvironmental clusters defining breeding zones for tropical irrigated rice in Brazil.$h[electronic resource] 260 $c2023 500 $aEarly view. 520 $aGeographic and seasonal effects are important in driving selection decisions in rice breeding research. Adopting new strategies for characterizing environmental?phenotype associations is critical to understanding these effects, and the outcomes of their study could reflect the benefits of developing locally adapted cultivars. This study aimed to characterize Brazil's tropical irrigated rice (IR) environment, Latin America's largest rice production system. We integrated unsupervised (K-means clustering) and supervised (decision tree classifier) algorithms to identify environmental clusters (EC) based on historical yield data. The data set included 31 locations and 471 genotypes from 1982 to 2017. We used environmental features (EF), such as weather and geography, as input variables for our analysis, assuming the model as EC ∼ f (EF). Results indicate that the tropical IR production region can be divided into four primary breeding zones, with temperature emerging as a significant factor in the study area. After employing a linear mixed model analysis, we observed that the current relationship between genetics (G), environmental variation (E), and their interaction (G×E) in Brazil's tropical IR has a 1:6:2 ratio. However, when introducing our data-driven model based on EC, we reduced this ratio to 1:5:1. Therefore, the selection for local adaptability across a large region became more reliable. Our approach successfully identified EC in Brazil's tropical production region of IR, providing valuable insights for defining breeding zones and identifying more productive and stable seed production fields. 650 $aBreeding 650 $aClimate models 650 $aEnvironmental factors 650 $aGenotype 650 $aGenotype-environment interaction 650 $aRice 650 $aTropical agriculture 650 $aArroz Irrigado 650 $aGenótipo 650 $aMeio Ambiente 650 $aMelhoramento Genético Vegetal 650 $aOryza Sativa 650 $aSistema de Produção 700 1 $aMATTA, D. H. da 700 1 $aFERNANDES, I. K. 700 1 $aSTONE, L. F. 700 1 $aHEINEMANN, A. B. 773 $tAgronomy Journal, 2023.
Download
Esconder MarcMostrar Marc Completo |
Registro original: |
Embrapa Arroz e Feijão (CNPAF) |
|
Biblioteca |
ID |
Origem |
Tipo/Formato |
Classificação |
Cutter |
Registro |
Volume |
Status |
URL |
Voltar
|
|
Registros recuperados : 7 | |
1. |  | LARENAS, M. A. C.; MAGALHAES, D. V.; BECKER, M.; MILORI, D. M. B. P. Efeito da homogeneização do solo em sinais LIBS. In: JORNADA CIENTÍFICA - EMBRAPA SÃO CARLOS, 10., 2018, São Carlos, SP. Anais... São Carlos: Embrapa Instrumentação: Embrapa Pecuária Sudeste, 2018. p. 57. Editores técnicos: Daniel Souza Corrêa, Elaine Cristina Paris, Maria Alice Martins, Paulino Ribeiro Villas Boas, Wilson Tadeu Lopes da Silva. (Embrapa Instrumentação. Documentos, 68). (Embrapa Instrumentação. Documentos, 68).Tipo: Resumo em Anais de Congresso |
Biblioteca(s): Embrapa Instrumentação. |
|    |
2. |  | AROCA, R. V.; HERNANDES, A. C.; MAGALHÃES, D. V.; BECKER, M.; VAZ, C. M. P.; CALBO, A. G. Calibration of passive UHF RFID tags using neural networks to measure soil moisture. Journal of Sensors, v. 2018, ID 3436503, p. 1-12, 2018.Tipo: Artigo em Periódico Indexado | Circulação/Nível: B - 1 |
Biblioteca(s): Embrapa Instrumentação. |
|    |
3. |  | AROCA, R. V.; HERNANDES, A. C.; MAGALHAES, D. V.; BECKER, M.; VAZ, C. M. P.; CALBO, A. G. Application of standard EPC/GEN2 UHF RFID tags as soil moisture sensors. In: INTERNATIONAL ELECTRONIC CONFERENCE ON SENSORS AND APPLICATIONS - ECSA, 3., (online), 2016, [S. l.: s. n.], 2016. não paginado. (Sciforum electronic conference series; v. 3).Tipo: Artigo em Anais de Congresso |
Biblioteca(s): Embrapa Instrumentação. |
|    |
4. |  | LARENAS, M. A. C.; MAGALHÃES, D. V.; BECKER, M.; OLIVEIRA, P. P. A.; MILORI, D. M. B. P. Efeito da compactação do solo sobre o nível do sinal obtido por espectrometria de emissão óptica com plasma induzido por laser (LIBS). In: JORNADA CIENTÍFICA - EMBRAPA SÃO CARLOS, 9., 2017, São Carlos, SP. Anais... São Carlos: Embrapa Pecuária Sudeste: Embrapa Instrumentação, 2017. p. 16. Editores técnicos: Alexandre Berndt, Ana Rita de Araujo Nogueira, Bianca Baccili Zanotto Vigna, Juliana Gonçalves Costa, Lea Chapaval, Manuel Antonio Chagas Jacinto, Patricia Menezes Santos. (Embrapa Pecuária Sudeste, Documentos, 126).Tipo: Artigo em Anais de Congresso |
Biblioteca(s): Embrapa Instrumentação; Embrapa Pecuária Sudeste. |
|    |
5. |  | GARBIN, J. R.; MILORI, D. M. B. P.; MAGALHAES, D. V.; ANWAR, M.; AHMED, M.; BEBEACHIBULI, A.; MULLER, S. T.; BAGNATO, V. S. Measurement of the absolute total electron impact cross section on Cs atoms using a magnetooptical trap. Laser Physics, [S. l.], v. 18, n. 2, p. 144-148, 2008.Tipo: Artigo em Periódico Indexado | Circulação/Nível: Internacional - A |
Biblioteca(s): Embrapa Instrumentação. |
|   |
6. |  | NICOLODELLI, G.; VILLAS-BOAS, P. R.; MENEGATTI, C. R.; SENESI, G. S.; MAGALHÃES, D. V.; SOUZA, D. de; MILORI, D. M. B. P.; MARANGONI, B. S. Determination of Pb in soils by double-pulse laser-induced breakdown spectroscopy assisted by continuum wave-diode laser-induced fluorescence. Applied Optics, v. 57, n. 28, p. 8366-8372, out. 2018Tipo: Artigo em Periódico Indexado | Circulação/Nível: A - 1 |
Biblioteca(s): Embrapa Instrumentação. |
|    |
7. |  | ARGOTE, I. L.; archila, j. f.; HIGUTI, V. A. H.; RUEDA, O. E.; MARAO, L. A. B.; CAMPOS, M.; SILVA, K. S. G.; VAN HALST, V.; NETO, L. A.; TIBERON, P.; SAAVEDRA, J. L.; ESPINOSA, J. F.; MAGALHAES, D. V.; MILORI, D. M. B. P.; BECKER, M. Projeto mecatrônico de um rover para aplicação na análise de solos usando tecnologia LIBS - parte II. In: SIMPÓSIO NACIONAL DE INSTRUMENTAÇÃO AGROPECUÁRIA, 2014, São Carlos, SP Anais do SIAGRO: ciência, inovação e mercado 2014. São Carlos, SP: Embrapa Instrumentação, 2014. p. 123-126. Editores: Carlos Manoel Pedro Vaz, Débora Marcondes Bastos Pereira Milori, Silvio Crestana.Tipo: Artigo em Anais de Congresso |
Biblioteca(s): Embrapa Instrumentação. |
|    |
Registros recuperados : 7 | |
|
Expressão de busca inválida. Verifique!!! |
|
|