Registro Completo |
Biblioteca(s): |
Embrapa Milho e Sorgo. |
Data corrente: |
03/03/2009 |
Data da última atualização: |
30/05/2018 |
Tipo da produção científica: |
Artigo em Periódico Indexado |
Autoria: |
LIU, J.; MAGALHAES, J. V.; SHAFF, J.; KOCHIAN, L. |
Afiliação: |
Jiping Liu, Cornell University; JURANDIR VIEIRA DE MAGALHAES, CNPMS; Jon E. Shaff, Cornell University; Leon V. Kochian, Cornell University. |
Título: |
Aluminum-activated citrate and malate transporters from the MATE and ALMT families function independently to confer Arabidopsis aluminum tolerance. |
Ano de publicação: |
2009 |
Fonte/Imprenta: |
The Plant Journal, Malden, v. 57, n. 3, p. 389-399, 2009. |
DOI: |
10.1111/j.1365-313X.2008.03696.x |
Idioma: |
Inglês |
Conteúdo: |
Aluminum-activated root malate and citrate exudation play an important role in plant Al tolerance. This paper characterizes AtMATE, a homolog of the recently discovered sorghum and barley Al-tolerance genes, shown here to encode an Al-activated citrate transporter in Arabidopsis. Together with the previously characterized Al-activated malate transporter, AtALMT1, this discovery allowed us to examine the relationship in the same species between members of the two gene families for which Al-tolerance genes have been identified. AtMATE is expressed primarily in roots and is induced by Al. An AtMATE T-DNA knockdown line exhibited very low AtMATE expression and Al-activated root citrate exudation was abolished. The AtALMT1 AtMATE double mutant lacked both Al-activated root malate and citrate exudation and showed greater Al sensitivity than the AtALMT1 mutant. Therefore, although AtALMT1 is a major contributor to Arabidopsis Al tolerance, AtMATE also makes a significant but smaller contribution. The expression patterns of AtALMT1 and AtMATE and the profiles of Al-activated root citrate and malate exudation are not affected by the presence or absence of the other gene. These results suggest that AtALMT1-mediated malate exudation and AtMATE-mediated citrate exudation evolved independently to confer Al tolerance in Arabidopsis. However, a link between regulation of expression of the two transporters in response to Al was identified through work on STOP1, a transcription factor that was previously shown to be necessary for AtALMT1 expression. Here we show that STOP1 is also required for AtMATE expression and Al-activated citrate exudation. MenosAluminum-activated root malate and citrate exudation play an important role in plant Al tolerance. This paper characterizes AtMATE, a homolog of the recently discovered sorghum and barley Al-tolerance genes, shown here to encode an Al-activated citrate transporter in Arabidopsis. Together with the previously characterized Al-activated malate transporter, AtALMT1, this discovery allowed us to examine the relationship in the same species between members of the two gene families for which Al-tolerance genes have been identified. AtMATE is expressed primarily in roots and is induced by Al. An AtMATE T-DNA knockdown line exhibited very low AtMATE expression and Al-activated root citrate exudation was abolished. The AtALMT1 AtMATE double mutant lacked both Al-activated root malate and citrate exudation and showed greater Al sensitivity than the AtALMT1 mutant. Therefore, although AtALMT1 is a major contributor to Arabidopsis Al tolerance, AtMATE also makes a significant but smaller contribution. The expression patterns of AtALMT1 and AtMATE and the profiles of Al-activated root citrate and malate exudation are not affected by the presence or absence of the other gene. These results suggest that AtALMT1-mediated malate exudation and AtMATE-mediated citrate exudation evolved independently to confer Al tolerance in Arabidopsis. However, a link between regulation of expression of the two transporters in response to Al was identified through work on STOP1, a transcription factor that w... Mostrar Tudo |
Palavras-Chave: |
ALMT; Aluminum tolerance; Aluminum toxicity; Multi-drug; Organic cid exudation; Plasma membrane protein; Toxic compound extrusion; Transporter protein. |
Categoria do assunto: |
S Ciências Biológicas |
Marc: |
null Download
Esconder MarcMostrar Marc Completo |
Registro original: |
Embrapa Milho e Sorgo (CNPMS) |
|