Registro Completo |
Biblioteca(s): |
Embrapa Agricultura Digital. |
Data corrente: |
20/12/2017 |
Data da última atualização: |
07/01/2020 |
Tipo da produção científica: |
Artigo em Periódico Indexado |
Autoria: |
LASSO, E.; THAMADA, T. T.; MEIRA, C. A. A.; CORRALES, J. C. |
Afiliação: |
EMMANUEL LASSO, University of Cauca; THIAGO TOSHIYUKI THAMADA, Unicamp; CARLOS ALBERTO ALVES MEIRA, CNPTIA; JUAN CARLOS CORRALES, University of Cauca. |
Título: |
Expert system for coffee rust detection based on supervised learning and graph pattern matching. |
Ano de publicação: |
2017 |
Fonte/Imprenta: |
International Journal of Metadata, Semantics and Ontologies, v. 12, n. 1, p. 19-27, 2017. |
DOI: |
10.1504/IJMSO.2017.10008638 |
Idioma: |
Inglês |
Conteúdo: |
Abstract: Diseases in agricultural production systems represent one of the main reasons of losses and poor-quality products. For coffee production, experts in this area suggest that weather conditions and crop physical properties are the main variables that determine the development of coffee rust. This paper proposes an extraction of rules to detect coffee rust from induction of decision trees and expert knowledge. In order to obtain a model with greater expressiveness and interpretability, a graph-based representation is proposed. Finally, the extracted rules are evaluated using an expert system supported on graph pattern matching. |
Palavras-Chave: |
Árvore de decisão; Coffee rust; Decision tree; Ferrugem cafeeira; Graph pattern matching; Sistema especialista. |
Thesagro: |
Agricultura; Doença de planta; Hemileia vastatrix. |
Thesaurus Nal: |
Agriculture; Expert systems; Plant diseases and disorders. |
Categoria do assunto: |
X Pesquisa, Tecnologia e Engenharia |
Marc: |
null Download
Esconder MarcMostrar Marc Completo |
Registro original: |
Embrapa Agricultura Digital (CNPTIA) |