|
|
 | Acesso ao texto completo restrito à biblioteca da Embrapa Agricultura Digital. Para informações adicionais entre em contato com cnptia.biblioteca@embrapa.br. |
Registro Completo |
Biblioteca(s): |
Embrapa Agricultura Digital. |
Data corrente: |
07/01/2019 |
Data da última atualização: |
14/08/2023 |
Tipo da produção científica: |
Artigo em Anais de Congresso |
Autoria: |
JOÃO, R. S.; MPINDA, S. T. A.; VIEIRA, A. P. B.; JOÃO, R. S.; ROMANI, L. A. S.; RIBEIRO, M. X. |
Afiliação: |
RAFAEL S. JOÃO, UFSCar; STEVE T. A. MPINDA, UFSCar; ANA P. B. VIEIRA, UFSCar; RENATO S. JOÃO, UFSCar; LUCIANA ALVIM SANTOS ROMANI, CNPTIA; MARCELA X. RIBEIRO, UFSCar. |
Título: |
A New approach to classify sugarcane fields based on association rules. |
Ano de publicação: |
2018 |
Fonte/Imprenta: |
In: INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY, 14., 2018. Information technology - new generations: proceedings. New York: Springer Science; Business Media, 2018. |
Páginas: |
p. 475-483 |
Série: |
(Advances in intelligent systems and computing, 558). |
DOI: |
10.1007/978-3-319-54978-1_61 |
Idioma: |
Inglês |
Conteúdo: |
In order to corroborate the acquired knowledge of the human expert with the use of computational systems in the context of agrocomputing, this work presents a novel classification method for mining agrometeorological remote sensing data and its imple-mentation to identify sugarcane fields, by analyzing Normalized Difference Vegetation Index (NDVI) series. The proposed method, called RAMiner (Rule-based Associative classifier Miner) creates a learning model from sets of mined association rules and employs the rules to constructs an associative classifier. RAMiner was proposed to deal with low spatial resolution image datasets, provided by two sensors/satellites (AVHRR/NOAA and MODIS/Terra). The proposal employs a two-ways classification step for the new data: Considers the conviction value and the conviction-based probability (a weighted accuracy formulated in this work). The results given were compared with others delivered by well-known classifiers, such as C4.5, zeroR, OneR, Naive Bayes, Random Forest and Support Vector Machine (SVM). RAMiner presented the highest accuracy (83.4%),attesting it is well-suited to mine remote sensing data. |
Palavras-Chave: |
Agrometeorological; Association rules; Associative classification; Data mining; Mineração de dados; Regras de associação. |
Categoria do assunto: |
-- |
Marc: |
LEADER 02144nam a2200277 a 4500 001 2103120 005 2023-08-14 008 2018 bl uuuu u00u1 u #d 024 7 $a10.1007/978-3-319-54978-1_61$2DOI 100 1 $aJOÃO, R. S. 245 $aA New approach to classify sugarcane fields based on association rules.$h[electronic resource] 260 $aIn: INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY, 14., 2018. Information technology - new generations: proceedings. New York: Springer Science; Business Media$c2018 300 $ap. 475-483 490 $a(Advances in intelligent systems and computing, 558). 520 $aIn order to corroborate the acquired knowledge of the human expert with the use of computational systems in the context of agrocomputing, this work presents a novel classification method for mining agrometeorological remote sensing data and its imple-mentation to identify sugarcane fields, by analyzing Normalized Difference Vegetation Index (NDVI) series. The proposed method, called RAMiner (Rule-based Associative classifier Miner) creates a learning model from sets of mined association rules and employs the rules to constructs an associative classifier. RAMiner was proposed to deal with low spatial resolution image datasets, provided by two sensors/satellites (AVHRR/NOAA and MODIS/Terra). The proposal employs a two-ways classification step for the new data: Considers the conviction value and the conviction-based probability (a weighted accuracy formulated in this work). The results given were compared with others delivered by well-known classifiers, such as C4.5, zeroR, OneR, Naive Bayes, Random Forest and Support Vector Machine (SVM). RAMiner presented the highest accuracy (83.4%),attesting it is well-suited to mine remote sensing data. 653 $aAgrometeorological 653 $aAssociation rules 653 $aAssociative classification 653 $aData mining 653 $aMineração de dados 653 $aRegras de associação 700 1 $aMPINDA, S. T. A. 700 1 $aVIEIRA, A. P. B. 700 1 $aJOÃO, R. S. 700 1 $aROMANI, L. A. S. 700 1 $aRIBEIRO, M. X.
Download
Esconder MarcMostrar Marc Completo |
Registro original: |
Embrapa Agricultura Digital (CNPTIA) |
|
Biblioteca |
ID |
Origem |
Tipo/Formato |
Classificação |
Cutter |
Registro |
Volume |
Status |
URL |
Voltar
|
|
Registros recuperados : 1 | |
1. |  | PAULA, A. M.; CUTRIN, A. O.; VASCONCELOS, T. N. N.; SOARES, C. R. A.; SERGIO, E. C.; PINTO, L. P.; MONTEIRO, J. R. B.; BORGES, L. K.; TONELLO, V. M.; DANTAS, M. Biomassa e nutrientes de raizes em floresta aberta e capoeira no norte do Mato Grosso. In: CONGRESSO DE ECOLOGIA DO BRASIL, 3., 1996, Brasilia. Manejo de ecossistemas e mudancas globais: resumos. Brasilia: Universidade de Brasilia, 1996. p.72-73.Biblioteca(s): Embrapa Pantanal. |
|   |
Registros recuperados : 1 | |
|
Expressão de busca inválida. Verifique!!! |
|
|