03610naa a2200205 a 450000100080000000500110000800800410001910000190006024500880007926000090016752030320017665000230320865000110323165000230324265000100326565000280327565300230330370000160332677300620334218758412011-07-25 2011 bl uuuu u00u1 u #d1 aFAGERIA, N. K. aThe role of mineral nutrition on root growth of crop plants.h[electronic resource] c2011 aAgriculture is going through a profound revolution worldwide due to increasing world demand for food, higher costs of energy and other inputs, environmental pollution problems, and instability of cropping systems. In this context, knowledge of factors that affect root development is fundamental to improving nutrient cycling and uptake in soil?plant systems. Roots are important organs that supply water, nutrients, hormones, and mechanical support (anchorage) to crop plants and consequently affect economic yields. In addition, roots improve soil organic matter (OM) by contributing to soil pools of organic carbon (C), nitrogen (N), and microbial biomass. Root-derived soil C is retained and forms more stable soil aggregates than shoot-derived soil C. Although roots normally contribute only 10?20% of the total plant weight, a well-developed root system is essential for healthy plant growth and development. Root growth of plants is controlled genetically, but it is also influenced by environmental factors. Mineral nutrition is an important factor influencing the growth of plant roots, but detailed information on nutritional effects is limited, primarily because roots are half-hidden organs that are very difficult to separate from soil. As a result, it is difficult to measure the effect of biotic and abiotic factors on root growth under field conditions. Root growth is mainly measured in terms of root density, length, and weight. Root dry weight is often better related to crop yields than is root length or density. The response of root growth to chemical fertilization is similar to that of shoot growth; however, the magnitude of the response may differ. In nutrient-deficient soils, root weight often increases in a quadratic manner with the addition of chemical fertilizers. Increasing nutrient supplies in the soil may also decrease root length but increase root weight in a quadratic fashion. Roots with adequate nutrient supplies may also have more root hairs than nutrient-deficient roots. This may result in greater uptake of water and nutrients by roots well supplied with essential plant nutrients, compared with roots grown in nutrient-deficient soils. Under favorable conditions, a major part of the root system is usually found in the top 20 cm of soil. Maximum root growth is generally achieved at flowering in cereals and at pod-setting in legumes. Genotypic variations are often found in the response of root growth to nutrient applications, and the possibility of modifying root system response to soil properties offers exciting prospects for future improvements in crop yields. Rooting pattern in crop plants is under multi- or polygenic control, and breeding programs can be used to improve root system properties for environments where drought is a problem. The use of crop species and cultivars tolerant to biotic and abiotic stresses, as well as the use of appropriate cultural practices, can improve plant root system function under favorable and unfavorable environmental conditions. aNutrição vegetal aPlanta aProdução vegetal aRaíz aTransporte de nutriente aNutrição mineral1 aMOREIRA, A. tAdvances in Agronomy, New Yorkgv. 110, p. 251-331, 2011.