02613naa a2200361 a 450000100080000000500110000800800410001902400370006010000150009724501100011226000090022252015830023165000120181465000160182665000220184265000190186465000290188365000330191265000130194565000130195865000130197165000160198465000230200065300230202365300200204665300140206665300240208070000150210470000220211970000230214170000240216477300630218821345272023-01-09 2022 bl uuuu u00u1 u #d7 a10.1590/0103-8478cr202011042DOI1 aLUZ, L. R. aBiomass and vegetation index by remote sensing in different caatinga forest areas.h[electronic resource] c2022 aContinued unsustainable exploitation of natural resources promotes environmental degradation and threatens the preservation of dry forests around the world. This situation exposes the fragility and the necessity to study landscape transformations. In addition, it is necessary to consider the biomass quantity and to establish strategies to monitor natural and anthropic disturbances. Thus, this research analyzed the relationship between vegetation index and the estimated biomass using allometric equations in different Brazilian caatinga forest areas from satellite images. This procedure is performed by estimating the biomass from 9 dry tropical forest fragments using allometric equations. Area delimitations were obtained from the Embrapa collection of dendrometric data collected in the period between 2011 and 2012. Spectral variables were obtained from the orthorectified images of the RapidEye satellite. The aboveground biomass ranged from 6.88 to 123.82 Mg.ha-1. SAVI values were L = 1 and L = 0.5, while NDVI and EVI ranged from 0.1835 to 0.4294, 0.2197 to 0.5019, 0.3622 to 0.7584, and 0.0987 to 0.3169, respectively. Relationships among the estimated biomass and the vegetation indexes were moderate, with correlation coefficients (Rs) varying between 0.64 and 0.58. The best adjusted equation was the SAVI equation, for which the coefficient of determination was R2 = 0.50, R2 aj = 0.49, RMSE = 17.18 Mg.ha-1 and mean absolute error of prediction (MAE) = 14.07 Mg.ha-1, confirming the importance of the Savi index in estimating the caatinga aboveground biomass. aBiomass aDry forests aMicrobial biomass aRemote sensing aRenewable energy sources aStructural equation modeling aBiomassa aCaatinga aFloresta aVegetação aVegetação Nativa aEnergia renovável aFlorestas secas aModelagem aSnsoriamento remoto1 aGIONGO, V.1 aSANTOS, A. M. dos1 aLOPES, R. J. de C.1 aLIMA JÚNIOR, C. de tCiência Rural, Santa Mariagv. 52, n. 2, e20201104, 2022.