01502nam a2200289 a 450000100080000000500110000800800410001910000140006024502030007426001260027730000280040350000290043152004410046065000230090165000110092465300380093565300310097365300430100465300440104765300140109165300120110565300210111765300270113870000160116570000150118170000160119620609542020-01-21 2016 bl uuuu u00u1 u #d1 aBORRO, L. aBinding affinity prediction using a nonparametric regression model based on physicochemical and structural descriptors of the nano-environment for protein-ligand interactions.h[electronic resource] aIn: STRUCTURAL BIOINFORMATICS AND COMPUTATIONAL BIOPHYSICS, 2016, Orlando. [Proceedings...]. Orlando: [s.n.], 2016.c2016 ap. 116-117.c1 pôster. a3Dsig 2016. Pôster #56. aWe propose a new empirical scoring function for binding affinity prediction modeled based on physicochemical and structural descriptors that characterize the nano-environment that encompass both ligand and binding pocket residues. Our hypothesis is that a more detailed characterization of protein-ligand complexes in terms of describing nano-environment as precisely as possible can lead to improvements in binding affinity prediction. aBinding properties aModels aBinding affinity prediction model aComplexo proteína-ligante aEmpiric nonparametric predictive model aInterações entre proteína e ligantes aModelagem aModelos aPlataforma Sting aProtein-ligand complex1 aYANO, I. H.1 aMAZONI, I.1 aNESHICH, G.