BDPA - Bases de Dados da Pesquisa Agropecuária Embrapa
 






Acesso ao texto completo restrito à biblioteca da Embrapa Caprinos e Ovinos. Para informações adicionais entre em contato com cnpc.biblioteca@embrapa.br.
Registro Completo
Biblioteca(s):  Embrapa Caprinos e Ovinos.
Data corrente:  17/02/2020
Data da última atualização:  01/12/2020
Tipo da produção científica:  Artigo em Periódico Indexado
Autoria:  MONTENEGRO, A. R.; SILVA, L. P. da; LOBO, R. N. B.
Afiliação:  ASSIS RUBENS MONTENEGRO, Universidade Federal do Ceará (UFC) - Fortaleza, CE, Brazil; LUCIANO PINHEIRO DA SILVA, Universidade Federal do Ceará (UFC) - Fortaleza, CE, Brazil; RAIMUNDO NONATO BRAGA LOBO, CNPC.
Título:  Effect of different mating systems on population structure and genetic progress of a simulated small flock.
Ano de publicação:  2019
Fonte/Imprenta:  International Journal of Environmental Sciences and Natural Resources, v. 21, n. 1, e556051, 2019.
DOI:  10.19080/IJESNR.2019.21.556051
Idioma:  Inglês
Conteúdo:  Abstract: Strategies to promote genetic progress or preserve genetic diversity in small populations may change due to population size. Higher inbreeding coefficients are associated to the use of breeding values predicted by mixed model methodology, which tends to score better animals within the best families. The reduced effective population size makes herds more susceptible to genetic drift and inbred matings. We compared three methodologies/software on simulated data that reproduced small-closed populations: Mate Selection (evolutionary differential), Gencont (Lagrange Multipliers) and SGRmate (linear programming). Algorithms optimized the objective function in order to achieve the higher genetic progress, but with an inbreeding coefficient of less than 10%, selecting the necessary number of sires and forming the reproductive pairs, except for Gencont, whose objective function was only to minimize the coancestry. All software generated populations with similar genetic progress. Mate Selection generated populations with the highest levels of inbreeding coefficients, similar to RANDOM, which presented best controlled mating between relatives. Gencont produced populations with intermediate levels of inbreeding. SGRmate maintained lowest levels of inbreeding due to higher number of sires selected and equal proportionality in combination of the pairs. Use of linear programming (SGRmate) was more efficient in maintaining the genetic diversity of small-closed populations
Palavras-Chave:  Animal population; Breeding programs; Differential evolutionary algorithm; Mating optimization; Optimal genetic contribution; Optimization methods.
Thesaurus Nal:  Animal genetics; Computer software; Linear programming; Selection criteria.
Categoria do assunto:  G Melhoramento Genético
Marc:  Mostrar Marc Completo
Registro original:  Embrapa Caprinos e Ovinos (CNPC)
Biblioteca ID Origem Tipo/Formato Classificação Cutter Registro Volume Status URL
CNPC39527 - 1UPCAP - DD
Voltar






Registro Completo

Biblioteca(s):  Embrapa Uva e Vinho.
Data corrente:  15/10/2021
Data da última atualização:  15/10/2021
Tipo da produção científica:  Artigo em Periódico Indexado
Circulação/Nível:  A - 2
Autoria:  LIMA, M. dos S.; PEREIRA, G. E.; FEDRIGO, I. M. T.
Afiliação:  MARCOS DOS SANTOS LIMA, Department of Food Technology, Federal Institute of Sertão Pernambucano, Campus Petrolina, BR 407 km 08 RdJardim São Paulo, Petrolina, PE 56314-522, Brazil; GIULIANO ELIAS PEREIRA, CNPUV; ISABELA MAIA TOALDO FEDRIGO, Department of Food Science and Technology, Federal University of Santa Catarina, Admar Gonzaga Rd., 1346, Itacorubi, Florianópolis, SC 88034-001, Brazil.
Título:  Artifcial neural network: a powerful tool in associating phenolic compounds with antioxidant activity of grape juices.
Ano de publicação:  2021
Fonte/Imprenta:  Food Analytical Methods, 14 oct. 2021. Online.
DOI:  10.1007/s12161-021-02144-8
Idioma:  Inglês
Conteúdo:  In vitro techniques are essential to assess the antioxidant potential of foods, although methods with diferent action mechanisms make troublesome data analysis. This article describes the use of artifcial neural network (ANN) to associate phenolic compounds with antioxidant activity in vitro (AOX) of grape juices. A multilayer perceptron (MLP) ANN was obtained with 28 phenolics quantifed, as input layers, and AOX measuring by DPPH, ABTS, FRAP, H2O2, and β-carotene/linoleic acid bleaching assay (βCLA) methods, as output layers. To improve discussion in food sciences, the ANN results were compared with Pearson?s correlation and principal component analysis (PCA), methods largely used in food studies. Pearson?s technique showed correlations between antioxidant methods and some of the phenolic compounds, but with limitations. PCA proved to be a more powerful method than Pearson?s correlation, as it positively associated 13 phenolics with four out of fve antioxidant methods. The MLP-ANN allowed simultaneous association of 19 individual phenolics, while a single hidden layer predicted 15 phenolics with simultaneous action in all AOX methods. The power of association was: ANN>PCA>Pearson. It was evidenced that ANN is a powerful tool for screening antioxidants in diferent AOX systems, which is applicable in health interests.
Palavras-Chave:  Antioxidant methods; Bioactivity; Grape polyphenol.
Thesaurus NAL:  Chemometrics.
Categoria do assunto:  F Plantas e Produtos de Origem Vegetal
URL:  https://www.alice.cnptia.embrapa.br/alice/bitstream/doc/1135356/1/SantosLima2021-Article-ArtificialNeuralNetworkAPowerf.pdf
Marc:  Mostrar Marc Completo
Registro original:  Embrapa Uva e Vinho (CNPUV)
Biblioteca ID Origem Tipo/Formato Classificação Cutter Registro Volume Status
CNPUV18720 - 1UPCAP - DD
Fechar
Nenhum registro encontrado para a expressão de busca informada.
 
 

Embrapa
Todos os direitos reservados, conforme Lei n° 9.610
Política de Privacidade
Área Restrita

Embrapa Agricultura Digital
Av. André Tosello, 209 - Barão Geraldo
Caixa Postal 6041- 13083-886 - Campinas, SP
SAC: https://www.embrapa.br/fale-conosco

Valid HTML 4.01 Transitional