BDPA - Bases de Dados da Pesquisa Agropecuária Embrapa
 






Registro Completo
Biblioteca(s):  Embrapa Café.
Data corrente:  15/10/2020
Data da última atualização:  15/10/2020
Tipo da produção científica:  Artigo em Periódico Indexado
Autoria:  SOUSA, I. C. de; NASCIMENTO, M.; SILVA, G. N.; NASCIMENTO, A. C. C.; CRUZ, C. D.; SILVA, F. F. e; ALMEIDA, D. P. de; PESTANA, K. N.; AZEVEDO, C. F.; ZAMBOLIM, L.; CAIXETA, E. T.
Afiliação:  Ithalo Coelho de Sousa, Universidade Federal de Viçosa; Moysés Nascimento, Universidade Federal de Viçosa; Gabi Nunes Silva, Universidade Federal de Rondônia; Ana Carolina Campana Nascimento, Universidade Federal de Viçosa; Cosme Damião Cruz, Universidade Federal de Viçosa; Fabyano Fonseca e Silva, Universidade Federal de Viçosa; Dênia Pires de Almeida, Universidade Federal de Viçosa; Kátia Nogueira Pestana, Embrapa Mandioca e Fruticultura; Camila Ferreira Azevedo, Universidade Federal de Viçosa; Laércio Zambolim, Universidade Federal de Viçosa; EVELINE TEIXEIRA CAIXETA MOURA, CNPCa.
Título:  Genomic prediction of leaf rust resistance to Arabica coffee using machine learning algorithms.
Ano de publicação:  2021
Fonte/Imprenta:  Scientia Agricola, v. 78, n. 4, e20200021, 2021.
DOI:  http://dx.doi.org/10.1590/1678-992X-2020-0021
Idioma:  Inglês
Conteúdo:  Genomic selection (GS) emphasizes the simultaneous prediction of the genetic effects of thousands of scattered markers over the genome. Several statistical methodologies have been used in GS for the prediction of genetic merit. In general, such methodologies require certain assumptions about the data, such as the normality of the distribution of phenotypic values. To circumvent the non-normality of phenotypic values, the literature suggests the use of Bayesian Generalized Linear Regression (GBLASSO). Another alternative is the models based on machine learning, represented by methodologies such as Artificial Neural Networks (ANN), Decision Trees (DT) and related possible refinements such as Bagging, Random Forest and Boosting. This study aimed to use DT and its refinements for predicting resistance to orange rust in Arabica coffee. Additionally, DT and its refinements were used to identify the importance of markers related to the characteristic of interest. The results were compared with those from GBLASSO and ANN. Data on coffee rust resistance of 245 Arabica coffee plants genotyped for 137 markers were used. The DT refinements presented equal or inferior values of Apparent Error Rate compared to those obtained by DT, GBLASSO, and ANN. Moreover, DT refinements were able to identify important markers for the characteristic of interest. Out of 14 of the most important markers analyzed in each methodology, 9.3 marker... Mostrar Tudo
Palavras-Chave:  Statistical learning.
Thesagro:  Hemileia Vastatrix.
Thesaurus Nal:  Artificial intelligence; Plant breeding.
Categoria do assunto:  --
URL:  http://ainfo.cnptia.embrapa.br/digital/bitstream/item/216675/1/Sousa-et-al-2020.pdf
Marc:  Mostrar Marc Completo
Registro original:  Embrapa Café (CNPCa)
Biblioteca ID Origem Tipo/Formato Classificação Cutter Registro Volume Status URL
CNPCa - SAPC1460 - 1UPCAP - DD
Voltar






Ordenar por: RelevânciaAutorTítuloAnoImprime registros no formato resumido      Imprime registros no formato resumido
Registros recuperados : 1
Primeira ... 1 ... Última
1.Imagem marcado/desmarcadoSOUSA, I. C. de; NASCIMENTO, M.; SILVA, G. N.; NASCIMENTO, A. C. C.; CRUZ, C. D.; SILVA, F. F. e; ALMEIDA, D. P. de; PESTANA, K. N.; AZEVEDO, C. F.; ZAMBOLIM, L.; CAIXETA, E. T. Genomic prediction of leaf rust resistance to Arabica coffee using machine learning algorithms. Scientia Agricola, v. 78, n. 4, e20200021, 2021.
Tipo: Artigo em Periódico IndexadoCirculação/Nível: A - 1
Biblioteca(s): Embrapa Café.
Visualizar detalhes do registroAcesso ao objeto digitalImprime registro no formato completo
Registros recuperados : 1
Primeira ... 1 ... Última
Nenhum registro encontrado para a expressão de busca informada.
 
 

Embrapa
Todos os direitos reservados, conforme Lei n° 9.610
Política de Privacidade
Área Restrita

Embrapa Informática Agropecuária
Av. André Tosello, 209 - Barão Geraldo
Caixa Postal 6041- 13083-886 - Campinas, SP
PABX: SAC (19) 3211-5743
SAC: https://www.embrapa.br/fale-conosco

Valid HTML 4.01 Transitional