Portal do Governo Brasileiro
BDPA - Bases de Dados da Pesquisa Agropecuária Embrapa
 






Registro Completo
Biblioteca(s):  Embrapa Mandioca e Fruticultura.
Data corrente:  17/08/2011
Data da última atualização:  18/08/2011
Tipo da produção científica:  Artigo em Anais de Congresso
Autoria:  XAVIER, F. A. da S.; MENDONÇA, E. de S.; CARDOSO, I. M.; ROIG, A.; GONZÁLEZ-VILA, F. J.
Afiliação:  FRANCISCO ALISSON DA SILVA XAVIER, CNPMF; Eduardo de Sá Mendonça, UFES; Irene Maria Cardoso, UFV; Asunción Roig, CEBAS; Francisco Javier González-Vila, IRNAS.
Título:  Structural characteristics of soil humic acids in coffee-cultivation systems: 13C NMR and analytical pyrolysis.
Ano de publicação:  2011
Fonte/Imprenta:  In: CONGRESSO BRASILEIRO DE CIÊNCIA DO SOLO, 33., 2011, Uberlândia. Solos nos biomas brasileiros: sustentabilidade e mudanças climáticas. [Uberlândia]: SBCS: UFU: ICIAG, 2011. 1 CD-ROM.
Idioma:  Inglês
Notas:  pdf 1519-1
Conteúdo:  Structural characterization of soil organic matter is still poorly understood in Brazilian agroecosystems. We aimed to identify the qualitative changes of soil humic acids as influenced by agroforestry- and full sun-coffee systems in the Atlantic Coastal Rainforest domain. The study was carried out in the Zona da Mata located in the state of Minas Gerais, Brazil. The specific studied sites were:agroforestry-coffee (AGF), Full sun coffee (FSC) and Native forest (NF) which was selected and used to determine the native or steady state condition of soil. Soil humic acids were extracted by using basic-acid medium, purified, and freeze-dried to a solid state to perform 13C NMR and analytical pyrolysis analyses. 13C NMR assignment of soil HAs from FSC system suggests an intensification of the process of humification of HAs structure. The higher aromaticity index of HAs from FSC compared to the AGF system confirmed this result. The relative abundance in each specific pyrolitic group was similar among the different land use, with exception to the higher amounts of lignin-like and lipids compounds in AGF compared to FSC system, and the higher abundance of N-compounds in FSC (37,0%) than in AGF (21,5%) system. Combining 13C NMR with Pyrolysis is an interesting tool to the study of structural features of HAs. Despite of the discrepancies, both techniques indicated that studied AGF systems favor the genesis of soil HAs with lower degree of humification when compared to FSC system, as a r... Mostrar Tudo
Palavras-Chave:  Zona da mata.
Thesaurus Nal:  agroforestry; carbon; spectroscopy.
Categoria do assunto:  X Pesquisa, Tecnologia e Engenharia
URL:  https://ainfo.cnptia.embrapa.br/digital/bitstream/item/40034/1/id27808.pdf
Marc:  Mostrar Marc Completo
Registro original:  Embrapa Mandioca e Fruticultura (CNPMF)
Biblioteca ID Origem Tipo/Formato Classificação Cutter Registro Volume Status URL
CNPMF27808 - 1UPCAA - PPCD2011.0022011.002
Voltar






Acesso ao texto completo restrito à biblioteca da Embrapa Agrobiologia. Para informações adicionais entre em contato com cnpab.biblioteca@embrapa.br.

Registro Completo

Biblioteca(s):  Embrapa Agrobiologia.
Data corrente:  01/03/2021
Data da última atualização:  11/11/2022
Tipo da produção científica:  Capítulo em Livro Técnico-Científico
Autoria:  ZAMAN, M.; KLEINEIDAM, K.; BAKKEN, L.; BERENDT, J.; BRACKEN, C.; BUTTERBACH-BAHL, K.; CAI, Z.; CHANG, S. X.; CLOUGH, T.; DAWAR, K.; DING, W. X.; DÖRSCH, P.; MARTINS, M. dos R.; ECKHARDT, C.; FIEDLER, T.; FROSCH, T.; GOOPY, J.; GORRES, C. M.; GUPTA, A.; HENJES, S.; HOFMMAN, M. E. G.; HORN, M. A.; JAHANGIR, M. M. R.; JANSEN-WILLEMS, A.; LENHART, K.; HENG, L.; LEWICKA-SZCZEBAK, D.; LUCIC, G.; MERBOLD, L.; MOHN, J.; MOLSTAD, L.; MOSER, G.; MURPHY, P.; SANZ-COBENA, A.; SIMEK, M.; URQUIAGA, S.; WELL, R.; WRAGE-MÖNNIG, N.; ZAMAN, S.; SHANG, J.; MÜLLER, C.
Afiliação:  FAO IAEA Viena; Liebig University Giessen; Norwegian University; University of Rostock; University College Dublin; Karlsruhe Institute of Technology; Nanjing Normal University; University of Alberta; Lincoln University; University of Agriculture, Peshawar; Chinese Academy of Sciences; Norwegian University; UFRRJ; Liebig University Giessen; University of Rostock; Technical University Darmstadt; International Livestock Research Institute (ILRI), Nairobi; Hochschule Geisenheim University; Independent Consultant India; Leibniz University Hannover; Hertogenbosch, The Netherlands; Leibniz University Hannover; Bangladesh Agricultural University; Liebig University Giessen; Bingen University; FAO/IAEA; University of Wroc?aw; Picarro Inc. USA; International Livestock Research Institute (ILRI), Nairobi; Laboratory for Air Pollution and Environmental Technology, Empa Dübendorf; Norwegian University; Liebig University Giessen; University College, IR; Universidad Politécnica de Madrid; University of South Bohemia; SEGUNDO SACRAMENTO U CABALLERO, CNPAB; Thünen Institute of Climate-Smart Agriculture; University of Rostock; University of Canterbur; Nanjing Normal University; Liebig University Giessen.
Título:  Greenhouse gases from agriculture.
Ano de publicação:  2021
Fonte/Imprenta:  In: ZAMAN, M.; HENG, L.; Müller, C. (Ed.). Measuring emission of agricultural greenhouse gases and developing mitigation options using nuclear and related techniques: applications of nuclear techniques for GHGs. London: Springer, 2021. Chapter 1.
Páginas:  p. 1-10
ISBN:  978-3-030-55396-8
DOI:  https://doi.org/10.1007/978-3-030-55396-8_1
Idioma:  Inglês
Conteúdo:  The rapidly changing global climate due to increased emission of anthropogenic greenhouse gases (GHGs) is leading to an increased occurrence of extreme weather events such as droughts, floods, and heatwaves. The three major GHGs are carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O). The major natural sources of CO2 include ocean?atmosphere exchange, respiration of animals, soils (microbial respiration) and plants, and volcanic eruption; while the anthropogenic sources include burning of fossil fuel (coal, natural gas, and oil), deforestation, and the cultivation of land that increases the decomposition of soil organic matter and crop and animal residues. Natural sources of CH4 emission include wetlands, termite activities, and oceans. Paddy fields used for rice production, livestock production systems (enteric emission from ruminants), landfills, and the production and use of fossil fuels are the main anthropogenic sources of CH4. Nitrous oxide, in addition to being a major GHG, is also an ozone-depleting gas. N2O is emitted by natural processes from oceans and terrestrial ecosystems. Anthropogenic N2O emissions occur mostly through agricultural and other land-use activities and are associated with the intensification of agricultural and other human activities such as increased use of synthetic fertiliser (119.4 million tonnes of N worldwide in 2019), inefficient use of irrigation water, deposition of animal excreta (urine and dung) from grazing animals, excessive... Mostrar Tudo
Thesaurus NAL:  Climate change; Greenhouse gas emissions.
Categoria do assunto:  P Recursos Naturais, Ciências Ambientais e da Terra
Marc:  Mostrar Marc Completo
Registro original:  Embrapa Agrobiologia (CNPAB)
Biblioteca ID Origem Tipo/Formato Classificação Cutter Registro Volume Status
CNPAB41636 - 1UPCPL - DD
Fechar
Expressão de busca inválida. Verifique!!!
 
 

Embrapa
Todos os direitos reservados, conforme Lei n° 9.610
Política de Privacidade
Área Restrita

Embrapa Agricultura Digital
Av. André Tosello, 209 - Barão Geraldo
Caixa Postal 6041- 13083-886 - Campinas, SP
SAC: https://www.embrapa.br/fale-conosco

Valid HTML 4.01 Transitional